Step |
Hyp |
Ref |
Expression |
1 |
|
cofipsgn.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
cofipsgn.s |
|- S = ( pmSgn ` N ) |
3 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
4 |
|
eqid |
|- { p e. P | dom ( p \ _I ) e. Fin } = { p e. P | dom ( p \ _I ) e. Fin } |
5 |
3 1 4 2
|
psgnfn |
|- S Fn { p e. P | dom ( p \ _I ) e. Fin } |
6 |
|
difeq1 |
|- ( p = Q -> ( p \ _I ) = ( Q \ _I ) ) |
7 |
6
|
dmeqd |
|- ( p = Q -> dom ( p \ _I ) = dom ( Q \ _I ) ) |
8 |
7
|
eleq1d |
|- ( p = Q -> ( dom ( p \ _I ) e. Fin <-> dom ( Q \ _I ) e. Fin ) ) |
9 |
|
simpr |
|- ( ( N e. Fin /\ Q e. P ) -> Q e. P ) |
10 |
3 1
|
sygbasnfpfi |
|- ( ( N e. Fin /\ Q e. P ) -> dom ( Q \ _I ) e. Fin ) |
11 |
8 9 10
|
elrabd |
|- ( ( N e. Fin /\ Q e. P ) -> Q e. { p e. P | dom ( p \ _I ) e. Fin } ) |
12 |
|
fvco2 |
|- ( ( S Fn { p e. P | dom ( p \ _I ) e. Fin } /\ Q e. { p e. P | dom ( p \ _I ) e. Fin } ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) |
13 |
5 11 12
|
sylancr |
|- ( ( N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) |