| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cofipsgn.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 2 |  | cofipsgn.s |  |-  S = ( pmSgn ` N ) | 
						
							| 3 |  | eqid |  |-  ( SymGrp ` N ) = ( SymGrp ` N ) | 
						
							| 4 |  | eqid |  |-  { p e. P | dom ( p \ _I ) e. Fin } = { p e. P | dom ( p \ _I ) e. Fin } | 
						
							| 5 | 3 1 4 2 | psgnfn |  |-  S Fn { p e. P | dom ( p \ _I ) e. Fin } | 
						
							| 6 |  | difeq1 |  |-  ( p = Q -> ( p \ _I ) = ( Q \ _I ) ) | 
						
							| 7 | 6 | dmeqd |  |-  ( p = Q -> dom ( p \ _I ) = dom ( Q \ _I ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( p = Q -> ( dom ( p \ _I ) e. Fin <-> dom ( Q \ _I ) e. Fin ) ) | 
						
							| 9 |  | simpr |  |-  ( ( N e. Fin /\ Q e. P ) -> Q e. P ) | 
						
							| 10 | 3 1 | sygbasnfpfi |  |-  ( ( N e. Fin /\ Q e. P ) -> dom ( Q \ _I ) e. Fin ) | 
						
							| 11 | 8 9 10 | elrabd |  |-  ( ( N e. Fin /\ Q e. P ) -> Q e. { p e. P | dom ( p \ _I ) e. Fin } ) | 
						
							| 12 |  | fvco2 |  |-  ( ( S Fn { p e. P | dom ( p \ _I ) e. Fin } /\ Q e. { p e. P | dom ( p \ _I ) e. Fin } ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) | 
						
							| 13 | 5 11 12 | sylancr |  |-  ( ( N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) |