Metamath Proof Explorer


Theorem cofmpt

Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017)

Ref Expression
Hypotheses cofmpt.1
|- ( ph -> F : C --> D )
cofmpt.2
|- ( ( ph /\ x e. A ) -> B e. C )
Assertion cofmpt
|- ( ph -> ( F o. ( x e. A |-> B ) ) = ( x e. A |-> ( F ` B ) ) )

Proof

Step Hyp Ref Expression
1 cofmpt.1
 |-  ( ph -> F : C --> D )
2 cofmpt.2
 |-  ( ( ph /\ x e. A ) -> B e. C )
3 eqidd
 |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) )
4 1 feqmptd
 |-  ( ph -> F = ( y e. C |-> ( F ` y ) ) )
5 fveq2
 |-  ( y = B -> ( F ` y ) = ( F ` B ) )
6 2 3 4 5 fmptco
 |-  ( ph -> ( F o. ( x e. A |-> B ) ) = ( x e. A |-> ( F ` B ) ) )