Step |
Hyp |
Ref |
Expression |
1 |
|
cofon1.1 |
|- ( ph -> A e. ~P On ) |
2 |
|
cofon1.2 |
|- ( ph -> A. x e. A E. y e. B x C_ y ) |
3 |
|
cofon1.3 |
|- ( ph -> B C_ |^| { z e. On | A C_ z } ) |
4 |
|
sseq2 |
|- ( w = z -> ( B C_ w <-> B C_ z ) ) |
5 |
4
|
cbvrabv |
|- { w e. On | B C_ w } = { z e. On | B C_ z } |
6 |
|
sseq1 |
|- ( x = a -> ( x C_ y <-> a C_ y ) ) |
7 |
6
|
rexbidv |
|- ( x = a -> ( E. y e. B x C_ y <-> E. y e. B a C_ y ) ) |
8 |
2
|
ad2antrr |
|- ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) -> A. x e. A E. y e. B x C_ y ) |
9 |
|
simprr |
|- ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) -> a e. A ) |
10 |
7 8 9
|
rspcdva |
|- ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) -> E. y e. B a C_ y ) |
11 |
|
sseq2 |
|- ( y = b -> ( a C_ y <-> a C_ b ) ) |
12 |
11
|
cbvrexvw |
|- ( E. y e. B a C_ y <-> E. b e. B a C_ b ) |
13 |
10 12
|
sylib |
|- ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) -> E. b e. B a C_ b ) |
14 |
|
simprl |
|- ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) -> B C_ z ) |
15 |
14
|
sselda |
|- ( ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) /\ b e. B ) -> b e. z ) |
16 |
1
|
elpwid |
|- ( ph -> A C_ On ) |
17 |
16
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) /\ b e. B ) -> A C_ On ) |
18 |
|
simplrr |
|- ( ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) /\ b e. B ) -> a e. A ) |
19 |
17 18
|
sseldd |
|- ( ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) /\ b e. B ) -> a e. On ) |
20 |
|
simpllr |
|- ( ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) /\ b e. B ) -> z e. On ) |
21 |
|
ontr2 |
|- ( ( a e. On /\ z e. On ) -> ( ( a C_ b /\ b e. z ) -> a e. z ) ) |
22 |
19 20 21
|
syl2anc |
|- ( ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) /\ b e. B ) -> ( ( a C_ b /\ b e. z ) -> a e. z ) ) |
23 |
15 22
|
mpan2d |
|- ( ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) /\ b e. B ) -> ( a C_ b -> a e. z ) ) |
24 |
23
|
rexlimdva |
|- ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) -> ( E. b e. B a C_ b -> a e. z ) ) |
25 |
13 24
|
mpd |
|- ( ( ( ph /\ z e. On ) /\ ( B C_ z /\ a e. A ) ) -> a e. z ) |
26 |
25
|
expr |
|- ( ( ( ph /\ z e. On ) /\ B C_ z ) -> ( a e. A -> a e. z ) ) |
27 |
26
|
ssrdv |
|- ( ( ( ph /\ z e. On ) /\ B C_ z ) -> A C_ z ) |
28 |
27
|
ex |
|- ( ( ph /\ z e. On ) -> ( B C_ z -> A C_ z ) ) |
29 |
28
|
ss2rabdv |
|- ( ph -> { z e. On | B C_ z } C_ { z e. On | A C_ z } ) |
30 |
5 29
|
eqsstrid |
|- ( ph -> { w e. On | B C_ w } C_ { z e. On | A C_ z } ) |
31 |
|
intss |
|- ( { w e. On | B C_ w } C_ { z e. On | A C_ z } -> |^| { z e. On | A C_ z } C_ |^| { w e. On | B C_ w } ) |
32 |
30 31
|
syl |
|- ( ph -> |^| { z e. On | A C_ z } C_ |^| { w e. On | B C_ w } ) |
33 |
|
sseq2 |
|- ( w = |^| { z e. On | A C_ z } -> ( B C_ w <-> B C_ |^| { z e. On | A C_ z } ) ) |
34 |
|
ssorduni |
|- ( A C_ On -> Ord U. A ) |
35 |
16 34
|
syl |
|- ( ph -> Ord U. A ) |
36 |
|
ordsuc |
|- ( Ord U. A <-> Ord suc U. A ) |
37 |
35 36
|
sylib |
|- ( ph -> Ord suc U. A ) |
38 |
1
|
uniexd |
|- ( ph -> U. A e. _V ) |
39 |
|
sucexg |
|- ( U. A e. _V -> suc U. A e. _V ) |
40 |
38 39
|
syl |
|- ( ph -> suc U. A e. _V ) |
41 |
|
elong |
|- ( suc U. A e. _V -> ( suc U. A e. On <-> Ord suc U. A ) ) |
42 |
40 41
|
syl |
|- ( ph -> ( suc U. A e. On <-> Ord suc U. A ) ) |
43 |
37 42
|
mpbird |
|- ( ph -> suc U. A e. On ) |
44 |
|
onsucuni |
|- ( A C_ On -> A C_ suc U. A ) |
45 |
16 44
|
syl |
|- ( ph -> A C_ suc U. A ) |
46 |
|
sseq2 |
|- ( z = suc U. A -> ( A C_ z <-> A C_ suc U. A ) ) |
47 |
46
|
rspcev |
|- ( ( suc U. A e. On /\ A C_ suc U. A ) -> E. z e. On A C_ z ) |
48 |
43 45 47
|
syl2anc |
|- ( ph -> E. z e. On A C_ z ) |
49 |
|
onintrab2 |
|- ( E. z e. On A C_ z <-> |^| { z e. On | A C_ z } e. On ) |
50 |
48 49
|
sylib |
|- ( ph -> |^| { z e. On | A C_ z } e. On ) |
51 |
33 50 3
|
elrabd |
|- ( ph -> |^| { z e. On | A C_ z } e. { w e. On | B C_ w } ) |
52 |
|
intss1 |
|- ( |^| { z e. On | A C_ z } e. { w e. On | B C_ w } -> |^| { w e. On | B C_ w } C_ |^| { z e. On | A C_ z } ) |
53 |
51 52
|
syl |
|- ( ph -> |^| { w e. On | B C_ w } C_ |^| { z e. On | A C_ z } ) |
54 |
32 53
|
eqssd |
|- ( ph -> |^| { z e. On | A C_ z } = |^| { w e. On | B C_ w } ) |