Step |
Hyp |
Ref |
Expression |
1 |
|
cofon2.1 |
|- ( ph -> A e. ~P On ) |
2 |
|
cofon2.2 |
|- ( ph -> B e. ~P On ) |
3 |
|
cofon2.3 |
|- ( ph -> A. x e. A E. y e. B x C_ y ) |
4 |
|
cofon2.4 |
|- ( ph -> A. z e. B E. w e. A z C_ w ) |
5 |
|
sseq1 |
|- ( z = b -> ( z C_ w <-> b C_ w ) ) |
6 |
5
|
rexbidv |
|- ( z = b -> ( E. w e. A z C_ w <-> E. w e. A b C_ w ) ) |
7 |
4
|
adantr |
|- ( ( ph /\ b e. B ) -> A. z e. B E. w e. A z C_ w ) |
8 |
|
simpr |
|- ( ( ph /\ b e. B ) -> b e. B ) |
9 |
6 7 8
|
rspcdva |
|- ( ( ph /\ b e. B ) -> E. w e. A b C_ w ) |
10 |
|
sseq2 |
|- ( w = c -> ( b C_ w <-> b C_ c ) ) |
11 |
10
|
cbvrexvw |
|- ( E. w e. A b C_ w <-> E. c e. A b C_ c ) |
12 |
9 11
|
sylib |
|- ( ( ph /\ b e. B ) -> E. c e. A b C_ c ) |
13 |
|
ssintub |
|- A C_ |^| { a e. On | A C_ a } |
14 |
13
|
a1i |
|- ( ( ph /\ b e. B ) -> A C_ |^| { a e. On | A C_ a } ) |
15 |
14
|
sselda |
|- ( ( ( ph /\ b e. B ) /\ c e. A ) -> c e. |^| { a e. On | A C_ a } ) |
16 |
2
|
elpwid |
|- ( ph -> B C_ On ) |
17 |
16
|
ad2antrr |
|- ( ( ( ph /\ b e. B ) /\ c e. A ) -> B C_ On ) |
18 |
|
simplr |
|- ( ( ( ph /\ b e. B ) /\ c e. A ) -> b e. B ) |
19 |
17 18
|
sseldd |
|- ( ( ( ph /\ b e. B ) /\ c e. A ) -> b e. On ) |
20 |
1
|
elpwid |
|- ( ph -> A C_ On ) |
21 |
|
ssorduni |
|- ( A C_ On -> Ord U. A ) |
22 |
20 21
|
syl |
|- ( ph -> Ord U. A ) |
23 |
|
ordsuc |
|- ( Ord U. A <-> Ord suc U. A ) |
24 |
22 23
|
sylib |
|- ( ph -> Ord suc U. A ) |
25 |
1
|
uniexd |
|- ( ph -> U. A e. _V ) |
26 |
|
sucexg |
|- ( U. A e. _V -> suc U. A e. _V ) |
27 |
|
elong |
|- ( suc U. A e. _V -> ( suc U. A e. On <-> Ord suc U. A ) ) |
28 |
25 26 27
|
3syl |
|- ( ph -> ( suc U. A e. On <-> Ord suc U. A ) ) |
29 |
24 28
|
mpbird |
|- ( ph -> suc U. A e. On ) |
30 |
|
onsucuni |
|- ( A C_ On -> A C_ suc U. A ) |
31 |
20 30
|
syl |
|- ( ph -> A C_ suc U. A ) |
32 |
|
sseq2 |
|- ( a = suc U. A -> ( A C_ a <-> A C_ suc U. A ) ) |
33 |
32
|
rspcev |
|- ( ( suc U. A e. On /\ A C_ suc U. A ) -> E. a e. On A C_ a ) |
34 |
29 31 33
|
syl2anc |
|- ( ph -> E. a e. On A C_ a ) |
35 |
|
onintrab2 |
|- ( E. a e. On A C_ a <-> |^| { a e. On | A C_ a } e. On ) |
36 |
34 35
|
sylib |
|- ( ph -> |^| { a e. On | A C_ a } e. On ) |
37 |
36
|
ad2antrr |
|- ( ( ( ph /\ b e. B ) /\ c e. A ) -> |^| { a e. On | A C_ a } e. On ) |
38 |
|
ontr2 |
|- ( ( b e. On /\ |^| { a e. On | A C_ a } e. On ) -> ( ( b C_ c /\ c e. |^| { a e. On | A C_ a } ) -> b e. |^| { a e. On | A C_ a } ) ) |
39 |
19 37 38
|
syl2anc |
|- ( ( ( ph /\ b e. B ) /\ c e. A ) -> ( ( b C_ c /\ c e. |^| { a e. On | A C_ a } ) -> b e. |^| { a e. On | A C_ a } ) ) |
40 |
15 39
|
mpan2d |
|- ( ( ( ph /\ b e. B ) /\ c e. A ) -> ( b C_ c -> b e. |^| { a e. On | A C_ a } ) ) |
41 |
40
|
rexlimdva |
|- ( ( ph /\ b e. B ) -> ( E. c e. A b C_ c -> b e. |^| { a e. On | A C_ a } ) ) |
42 |
12 41
|
mpd |
|- ( ( ph /\ b e. B ) -> b e. |^| { a e. On | A C_ a } ) |
43 |
42
|
ex |
|- ( ph -> ( b e. B -> b e. |^| { a e. On | A C_ a } ) ) |
44 |
43
|
ssrdv |
|- ( ph -> B C_ |^| { a e. On | A C_ a } ) |
45 |
1 3 44
|
cofon1 |
|- ( ph -> |^| { a e. On | A C_ a } = |^| { b e. On | B C_ b } ) |