| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofth.f |
|- ( ph -> F e. ( C Faith D ) ) |
| 2 |
|
cofth.g |
|- ( ph -> G e. ( D Faith E ) ) |
| 3 |
|
relfunc |
|- Rel ( C Func E ) |
| 4 |
|
fthfunc |
|- ( C Faith D ) C_ ( C Func D ) |
| 5 |
4 1
|
sselid |
|- ( ph -> F e. ( C Func D ) ) |
| 6 |
|
fthfunc |
|- ( D Faith E ) C_ ( D Func E ) |
| 7 |
6 2
|
sselid |
|- ( ph -> G e. ( D Func E ) ) |
| 8 |
5 7
|
cofucl |
|- ( ph -> ( G o.func F ) e. ( C Func E ) ) |
| 9 |
|
1st2nd |
|- ( ( Rel ( C Func E ) /\ ( G o.func F ) e. ( C Func E ) ) -> ( G o.func F ) = <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. ) |
| 10 |
3 8 9
|
sylancr |
|- ( ph -> ( G o.func F ) = <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. ) |
| 11 |
|
1st2ndbr |
|- ( ( Rel ( C Func E ) /\ ( G o.func F ) e. ( C Func E ) ) -> ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) ) |
| 12 |
3 8 11
|
sylancr |
|- ( ph -> ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) ) |
| 13 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 14 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 15 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 16 |
|
relfth |
|- Rel ( D Faith E ) |
| 17 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> G e. ( D Faith E ) ) |
| 18 |
|
1st2ndbr |
|- ( ( Rel ( D Faith E ) /\ G e. ( D Faith E ) ) -> ( 1st ` G ) ( D Faith E ) ( 2nd ` G ) ) |
| 19 |
16 17 18
|
sylancr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` G ) ( D Faith E ) ( 2nd ` G ) ) |
| 20 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 21 |
|
relfunc |
|- Rel ( C Func D ) |
| 22 |
5
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F e. ( C Func D ) ) |
| 23 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 24 |
21 22 23
|
sylancr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 25 |
20 13 24
|
funcf1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 26 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
| 27 |
25 26
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 28 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
| 29 |
25 28
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 30 |
13 14 15 19 27 29
|
fthf1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) -1-1-> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 31 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 32 |
|
relfth |
|- Rel ( C Faith D ) |
| 33 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F e. ( C Faith D ) ) |
| 34 |
|
1st2ndbr |
|- ( ( Rel ( C Faith D ) /\ F e. ( C Faith D ) ) -> ( 1st ` F ) ( C Faith D ) ( 2nd ` F ) ) |
| 35 |
32 33 34
|
sylancr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) ( C Faith D ) ( 2nd ` F ) ) |
| 36 |
20 31 14 35 26 28
|
fthf1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) -1-1-> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 37 |
|
f1co |
|- ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) -1-1-> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) /\ ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) -1-1-> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) -1-1-> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 38 |
30 36 37
|
syl2anc |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) -1-1-> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 39 |
7
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> G e. ( D Func E ) ) |
| 40 |
20 22 39 26 28
|
cofu2nd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) y ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
| 41 |
|
eqidd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( Hom ` C ) y ) = ( x ( Hom ` C ) y ) ) |
| 42 |
20 22 39 26
|
cofu1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` x ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) |
| 43 |
20 22 39 28
|
cofu1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` y ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) |
| 44 |
42 43
|
oveq12d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) = ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 45 |
40 41 44
|
f1eq123d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) y ) : ( x ( Hom ` C ) y ) -1-1-> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) <-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) -1-1-> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) ) |
| 46 |
38 45
|
mpbird |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) y ) : ( x ( Hom ` C ) y ) -1-1-> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ) |
| 47 |
46
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` ( G o.func F ) ) y ) : ( x ( Hom ` C ) y ) -1-1-> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ) |
| 48 |
20 31 15
|
isfth2 |
|- ( ( 1st ` ( G o.func F ) ) ( C Faith E ) ( 2nd ` ( G o.func F ) ) <-> ( ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` ( G o.func F ) ) y ) : ( x ( Hom ` C ) y ) -1-1-> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ) ) |
| 49 |
12 47 48
|
sylanbrc |
|- ( ph -> ( 1st ` ( G o.func F ) ) ( C Faith E ) ( 2nd ` ( G o.func F ) ) ) |
| 50 |
|
df-br |
|- ( ( 1st ` ( G o.func F ) ) ( C Faith E ) ( 2nd ` ( G o.func F ) ) <-> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. e. ( C Faith E ) ) |
| 51 |
49 50
|
sylib |
|- ( ph -> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. e. ( C Faith E ) ) |
| 52 |
10 51
|
eqeltrd |
|- ( ph -> ( G o.func F ) e. ( C Faith E ) ) |