| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cofuval.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							cofuval.f | 
							 |-  ( ph -> F e. ( C Func D ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cofuval.g | 
							 |-  ( ph -> G e. ( D Func E ) )  | 
						
						
							| 4 | 
							
								
							 | 
							cofu2nd.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 5 | 
							
								
							 | 
							cofu2nd.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							cofu2.h | 
							 |-  H = ( Hom ` C )  | 
						
						
							| 7 | 
							
								
							 | 
							cofu2.y | 
							 |-  ( ph -> R e. ( X H Y ) )  | 
						
						
							| 8 | 
							
								1 2 3 4 5
							 | 
							cofu2nd | 
							 |-  ( ph -> ( X ( 2nd ` ( G o.func F ) ) Y ) = ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) o. ( X ( 2nd ` F ) Y ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							fveq1d | 
							 |-  ( ph -> ( ( X ( 2nd ` ( G o.func F ) ) Y ) ` R ) = ( ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) o. ( X ( 2nd ` F ) Y ) ) ` R ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` D ) = ( Hom ` D )  | 
						
						
							| 11 | 
							
								
							 | 
							relfunc | 
							 |-  Rel ( C Func D )  | 
						
						
							| 12 | 
							
								
							 | 
							1st2ndbr | 
							 |-  ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )  | 
						
						
							| 13 | 
							
								11 2 12
							 | 
							sylancr | 
							 |-  ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )  | 
						
						
							| 14 | 
							
								1 6 10 13 4 5
							 | 
							funcf2 | 
							 |-  ( ph -> ( X ( 2nd ` F ) Y ) : ( X H Y ) --> ( ( ( 1st ` F ) ` X ) ( Hom ` D ) ( ( 1st ` F ) ` Y ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							fvco3 | 
							 |-  ( ( ( X ( 2nd ` F ) Y ) : ( X H Y ) --> ( ( ( 1st ` F ) ` X ) ( Hom ` D ) ( ( 1st ` F ) ` Y ) ) /\ R e. ( X H Y ) ) -> ( ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) o. ( X ( 2nd ` F ) Y ) ) ` R ) = ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) )  | 
						
						
							| 16 | 
							
								14 7 15
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) o. ( X ( 2nd ` F ) Y ) ) ` R ) = ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							eqtrd | 
							 |-  ( ph -> ( ( X ( 2nd ` ( G o.func F ) ) Y ) ` R ) = ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) )  |