Step |
Hyp |
Ref |
Expression |
1 |
|
cofucl.f |
|- ( ph -> F e. ( C Func D ) ) |
2 |
|
cofucl.g |
|- ( ph -> G e. ( D Func E ) ) |
3 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
4 |
3 1 2
|
cofuval |
|- ( ph -> ( G o.func F ) = <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) |
5 |
3 1 2
|
cofu1st |
|- ( ph -> ( 1st ` ( G o.func F ) ) = ( ( 1st ` G ) o. ( 1st ` F ) ) ) |
6 |
4
|
fveq2d |
|- ( ph -> ( 2nd ` ( G o.func F ) ) = ( 2nd ` <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) ) |
7 |
|
fvex |
|- ( 1st ` G ) e. _V |
8 |
|
fvex |
|- ( 1st ` F ) e. _V |
9 |
7 8
|
coex |
|- ( ( 1st ` G ) o. ( 1st ` F ) ) e. _V |
10 |
|
fvex |
|- ( Base ` C ) e. _V |
11 |
10 10
|
mpoex |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) e. _V |
12 |
9 11
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
13 |
6 12
|
eqtrdi |
|- ( ph -> ( 2nd ` ( G o.func F ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) ) |
14 |
5 13
|
opeq12d |
|- ( ph -> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. = <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) |
15 |
4 14
|
eqtr4d |
|- ( ph -> ( G o.func F ) = <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. ) |
16 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
17 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
18 |
|
relfunc |
|- Rel ( D Func E ) |
19 |
|
1st2ndbr |
|- ( ( Rel ( D Func E ) /\ G e. ( D Func E ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
20 |
18 2 19
|
sylancr |
|- ( ph -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
21 |
16 17 20
|
funcf1 |
|- ( ph -> ( 1st ` G ) : ( Base ` D ) --> ( Base ` E ) ) |
22 |
|
relfunc |
|- Rel ( C Func D ) |
23 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
24 |
22 1 23
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
25 |
3 16 24
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
26 |
|
fco |
|- ( ( ( 1st ` G ) : ( Base ` D ) --> ( Base ` E ) /\ ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) -> ( ( 1st ` G ) o. ( 1st ` F ) ) : ( Base ` C ) --> ( Base ` E ) ) |
27 |
21 25 26
|
syl2anc |
|- ( ph -> ( ( 1st ` G ) o. ( 1st ` F ) ) : ( Base ` C ) --> ( Base ` E ) ) |
28 |
5
|
feq1d |
|- ( ph -> ( ( 1st ` ( G o.func F ) ) : ( Base ` C ) --> ( Base ` E ) <-> ( ( 1st ` G ) o. ( 1st ` F ) ) : ( Base ` C ) --> ( Base ` E ) ) ) |
29 |
27 28
|
mpbird |
|- ( ph -> ( 1st ` ( G o.func F ) ) : ( Base ` C ) --> ( Base ` E ) ) |
30 |
|
eqid |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
31 |
|
ovex |
|- ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) e. _V |
32 |
|
ovex |
|- ( x ( 2nd ` F ) y ) e. _V |
33 |
31 32
|
coex |
|- ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) e. _V |
34 |
30 33
|
fnmpoi |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
35 |
13
|
fneq1d |
|- ( ph -> ( ( 2nd ` ( G o.func F ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
36 |
34 35
|
mpbiri |
|- ( ph -> ( 2nd ` ( G o.func F ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
37 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
38 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
39 |
20
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
40 |
25
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
41 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
42 |
40 41
|
ffvelrnd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
43 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
44 |
40 43
|
ffvelrnd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
45 |
16 37 38 39 42 44
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
46 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
47 |
24
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
48 |
3 46 37 47 41 43
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
49 |
|
fco |
|- ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) /\ ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
50 |
45 48 49
|
syl2anc |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
51 |
|
ovex |
|- ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) e. _V |
52 |
|
ovex |
|- ( x ( Hom ` C ) y ) e. _V |
53 |
51 52
|
elmap |
|- ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) e. ( ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ^m ( x ( Hom ` C ) y ) ) <-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
54 |
50 53
|
sylibr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) e. ( ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ^m ( x ( Hom ` C ) y ) ) ) |
55 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F e. ( C Func D ) ) |
56 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> G e. ( D Func E ) ) |
57 |
3 55 56 41 43
|
cofu2nd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) y ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
58 |
3 55 56 41
|
cofu1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` x ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) |
59 |
3 55 56 43
|
cofu1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` y ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) |
60 |
58 59
|
oveq12d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) = ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
61 |
60
|
oveq1d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) = ( ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ^m ( x ( Hom ` C ) y ) ) ) |
62 |
54 57 61
|
3eltr4d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
63 |
62
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
64 |
|
fveq2 |
|- ( z = <. x , y >. -> ( ( 2nd ` ( G o.func F ) ) ` z ) = ( ( 2nd ` ( G o.func F ) ) ` <. x , y >. ) ) |
65 |
|
df-ov |
|- ( x ( 2nd ` ( G o.func F ) ) y ) = ( ( 2nd ` ( G o.func F ) ) ` <. x , y >. ) |
66 |
64 65
|
eqtr4di |
|- ( z = <. x , y >. -> ( ( 2nd ` ( G o.func F ) ) ` z ) = ( x ( 2nd ` ( G o.func F ) ) y ) ) |
67 |
|
vex |
|- x e. _V |
68 |
|
vex |
|- y e. _V |
69 |
67 68
|
op1std |
|- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
70 |
69
|
fveq2d |
|- ( z = <. x , y >. -> ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) = ( ( 1st ` ( G o.func F ) ) ` x ) ) |
71 |
67 68
|
op2ndd |
|- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
72 |
71
|
fveq2d |
|- ( z = <. x , y >. -> ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) = ( ( 1st ` ( G o.func F ) ) ` y ) ) |
73 |
70 72
|
oveq12d |
|- ( z = <. x , y >. -> ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) = ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ) |
74 |
|
fveq2 |
|- ( z = <. x , y >. -> ( ( Hom ` C ) ` z ) = ( ( Hom ` C ) ` <. x , y >. ) ) |
75 |
|
df-ov |
|- ( x ( Hom ` C ) y ) = ( ( Hom ` C ) ` <. x , y >. ) |
76 |
74 75
|
eqtr4di |
|- ( z = <. x , y >. -> ( ( Hom ` C ) ` z ) = ( x ( Hom ` C ) y ) ) |
77 |
73 76
|
oveq12d |
|- ( z = <. x , y >. -> ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) = ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
78 |
66 77
|
eleq12d |
|- ( z = <. x , y >. -> ( ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) ) |
79 |
78
|
ralxp |
|- ( A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
80 |
63 79
|
sylibr |
|- ( ph -> A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
81 |
|
fvex |
|- ( 2nd ` ( G o.func F ) ) e. _V |
82 |
81
|
elixp |
|- ( ( 2nd ` ( G o.func F ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> ( ( 2nd ` ( G o.func F ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) ) |
83 |
36 80 82
|
sylanbrc |
|- ( ph -> ( 2nd ` ( G o.func F ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
84 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
85 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
86 |
24
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
87 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
88 |
3 84 85 86 87
|
funcid |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) |
89 |
88
|
fveq2d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
90 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
91 |
20
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
92 |
25
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
93 |
16 85 90 91 92
|
funcid |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) = ( ( Id ` E ) ` ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) ) |
94 |
89 93
|
eqtrd |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) ) = ( ( Id ` E ) ` ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) ) |
95 |
1
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> F e. ( C Func D ) ) |
96 |
2
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> G e. ( D Func E ) ) |
97 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
98 |
1 97
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
99 |
98
|
simpld |
|- ( ph -> C e. Cat ) |
100 |
99
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> C e. Cat ) |
101 |
3 46 84 100 87
|
catidcl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
102 |
3 95 96 87 87 46 101
|
cofu2 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) ) ) |
103 |
3 95 96 87
|
cofu1 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( G o.func F ) ) ` x ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) |
104 |
103
|
fveq2d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) ) |
105 |
94 102 104
|
3eqtr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) ) |
106 |
86
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
107 |
|
simplr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> x e. ( Base ` C ) ) |
108 |
|
simprlr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> z e. ( Base ` C ) ) |
109 |
3 46 37 106 107 108
|
funcf2 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( x ( 2nd ` F ) z ) : ( x ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
110 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
111 |
100
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> C e. Cat ) |
112 |
|
simprll |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> y e. ( Base ` C ) ) |
113 |
|
simprrl |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
114 |
|
simprrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> g e. ( y ( Hom ` C ) z ) ) |
115 |
3 46 110 111 107 112 108 113 114
|
catcocl |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
116 |
|
fvco3 |
|- ( ( ( x ( 2nd ` F ) z ) : ( x ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) |
117 |
109 115 116
|
syl2anc |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) |
118 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
119 |
3 46 110 118 106 107 112 108 113 114
|
funcco |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
120 |
119
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
121 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
122 |
91
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
123 |
92
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
124 |
25
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
125 |
124
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
126 |
125 112
|
ffvelrnd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
127 |
125 108
|
ffvelrnd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` F ) ` z ) e. ( Base ` D ) ) |
128 |
3 46 37 106 107 112
|
funcf2 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
129 |
128 113
|
ffvelrnd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
130 |
3 46 37 106 112 108
|
funcf2 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( y ( 2nd ` F ) z ) : ( y ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
131 |
130 114
|
ffvelrnd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( y ( 2nd ` F ) z ) ` g ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
132 |
16 37 118 121 122 123 126 127 129 131
|
funcco |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) = ( ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
133 |
117 120 132
|
3eqtrd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
134 |
95
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> F e. ( C Func D ) ) |
135 |
96
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> G e. ( D Func E ) ) |
136 |
3 134 135 107 108
|
cofu2nd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) z ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ) |
137 |
136
|
fveq1d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) |
138 |
103
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` x ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) |
139 |
3 134 135 112
|
cofu1 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` y ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) |
140 |
138 139
|
opeq12d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. = <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ) |
141 |
3 134 135 108
|
cofu1 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` z ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) |
142 |
140 141
|
oveq12d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) = ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ) |
143 |
3 134 135 112 108 46 114
|
cofu2 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) = ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ) |
144 |
3 134 135 107 112 46 113
|
cofu2 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
145 |
142 143 144
|
oveq123d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) = ( ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
146 |
133 137 145
|
3eqtr4d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
147 |
146
|
anassrs |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
148 |
147
|
ralrimivva |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
149 |
148
|
ralrimivva |
|- ( ( ph /\ x e. ( Base ` C ) ) -> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
150 |
105 149
|
jca |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) ) |
151 |
150
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` C ) ( ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) ) |
152 |
|
funcrcl |
|- ( G e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
153 |
2 152
|
syl |
|- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
154 |
153
|
simprd |
|- ( ph -> E e. Cat ) |
155 |
3 17 46 38 84 90 110 121 99 154
|
isfunc |
|- ( ph -> ( ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) <-> ( ( 1st ` ( G o.func F ) ) : ( Base ` C ) --> ( Base ` E ) /\ ( 2nd ` ( G o.func F ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) /\ A. x e. ( Base ` C ) ( ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) ) ) ) |
156 |
29 83 151 155
|
mpbir3and |
|- ( ph -> ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) ) |
157 |
|
df-br |
|- ( ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) <-> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. e. ( C Func E ) ) |
158 |
156 157
|
sylib |
|- ( ph -> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. e. ( C Func E ) ) |
159 |
15 158
|
eqeltrd |
|- ( ph -> ( G o.func F ) e. ( C Func E ) ) |