Step |
Hyp |
Ref |
Expression |
1 |
|
cofulid.g |
|- ( ph -> F e. ( C Func D ) ) |
2 |
|
cofulid.1 |
|- I = ( idFunc ` D ) |
3 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
4 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
5 |
1 4
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
6 |
5
|
simprd |
|- ( ph -> D e. Cat ) |
7 |
2 3 6
|
idfu1st |
|- ( ph -> ( 1st ` I ) = ( _I |` ( Base ` D ) ) ) |
8 |
7
|
coeq1d |
|- ( ph -> ( ( 1st ` I ) o. ( 1st ` F ) ) = ( ( _I |` ( Base ` D ) ) o. ( 1st ` F ) ) ) |
9 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
10 |
|
relfunc |
|- Rel ( C Func D ) |
11 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
12 |
10 1 11
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
13 |
9 3 12
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
14 |
|
fcoi2 |
|- ( ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) -> ( ( _I |` ( Base ` D ) ) o. ( 1st ` F ) ) = ( 1st ` F ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( ( _I |` ( Base ` D ) ) o. ( 1st ` F ) ) = ( 1st ` F ) ) |
16 |
8 15
|
eqtrd |
|- ( ph -> ( ( 1st ` I ) o. ( 1st ` F ) ) = ( 1st ` F ) ) |
17 |
6
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> D e. Cat ) |
18 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
19 |
13
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
20 |
19
|
3adant3 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
21 |
13
|
ffvelrnda |
|- ( ( ph /\ y e. ( Base ` C ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
22 |
21
|
3adant2 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
23 |
2 3 17 18 20 22
|
idfu2nd |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) = ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) ) |
24 |
23
|
coeq1d |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) = ( ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) o. ( x ( 2nd ` F ) y ) ) ) |
25 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
26 |
12
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
27 |
|
simp2 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
28 |
|
simp3 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> y e. ( Base ` C ) ) |
29 |
9 25 18 26 27 28
|
funcf2 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
30 |
|
fcoi2 |
|- ( ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) -> ( ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) o. ( x ( 2nd ` F ) y ) ) = ( x ( 2nd ` F ) y ) ) |
31 |
29 30
|
syl |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) o. ( x ( 2nd ` F ) y ) ) = ( x ( 2nd ` F ) y ) ) |
32 |
24 31
|
eqtrd |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) = ( x ( 2nd ` F ) y ) ) |
33 |
32
|
mpoeq3dva |
|- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
34 |
9 12
|
funcfn2 |
|- ( ph -> ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
35 |
|
fnov |
|- ( ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
36 |
34 35
|
sylib |
|- ( ph -> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
37 |
33 36
|
eqtr4d |
|- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( 2nd ` F ) ) |
38 |
16 37
|
opeq12d |
|- ( ph -> <. ( ( 1st ` I ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
39 |
2
|
idfucl |
|- ( D e. Cat -> I e. ( D Func D ) ) |
40 |
6 39
|
syl |
|- ( ph -> I e. ( D Func D ) ) |
41 |
9 1 40
|
cofuval |
|- ( ph -> ( I o.func F ) = <. ( ( 1st ` I ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) |
42 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
43 |
10 1 42
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
44 |
38 41 43
|
3eqtr4d |
|- ( ph -> ( I o.func F ) = F ) |