Step |
Hyp |
Ref |
Expression |
1 |
|
cofulid.g |
|- ( ph -> F e. ( C Func D ) ) |
2 |
|
cofurid.1 |
|- I = ( idFunc ` C ) |
3 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
4 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
5 |
1 4
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
6 |
5
|
simpld |
|- ( ph -> C e. Cat ) |
7 |
2 3 6
|
idfu1st |
|- ( ph -> ( 1st ` I ) = ( _I |` ( Base ` C ) ) ) |
8 |
7
|
coeq2d |
|- ( ph -> ( ( 1st ` F ) o. ( 1st ` I ) ) = ( ( 1st ` F ) o. ( _I |` ( Base ` C ) ) ) ) |
9 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
10 |
|
relfunc |
|- Rel ( C Func D ) |
11 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
12 |
10 1 11
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
13 |
3 9 12
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
14 |
|
fcoi1 |
|- ( ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) -> ( ( 1st ` F ) o. ( _I |` ( Base ` C ) ) ) = ( 1st ` F ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( ( 1st ` F ) o. ( _I |` ( Base ` C ) ) ) = ( 1st ` F ) ) |
16 |
8 15
|
eqtrd |
|- ( ph -> ( ( 1st ` F ) o. ( 1st ` I ) ) = ( 1st ` F ) ) |
17 |
7
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( 1st ` I ) = ( _I |` ( Base ` C ) ) ) |
18 |
17
|
fveq1d |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` I ) ` x ) = ( ( _I |` ( Base ` C ) ) ` x ) ) |
19 |
|
fvresi |
|- ( x e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` x ) = x ) |
20 |
19
|
3ad2ant2 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( _I |` ( Base ` C ) ) ` x ) = x ) |
21 |
18 20
|
eqtrd |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` I ) ` x ) = x ) |
22 |
17
|
fveq1d |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` I ) ` y ) = ( ( _I |` ( Base ` C ) ) ` y ) ) |
23 |
|
fvresi |
|- ( y e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` y ) = y ) |
24 |
23
|
3ad2ant3 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( _I |` ( Base ` C ) ) ` y ) = y ) |
25 |
22 24
|
eqtrd |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` I ) ` y ) = y ) |
26 |
21 25
|
oveq12d |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) = ( x ( 2nd ` F ) y ) ) |
27 |
6
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> C e. Cat ) |
28 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
29 |
|
simp2 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
30 |
|
simp3 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> y e. ( Base ` C ) ) |
31 |
2 3 27 28 29 30
|
idfu2nd |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( 2nd ` I ) y ) = ( _I |` ( x ( Hom ` C ) y ) ) ) |
32 |
26 31
|
coeq12d |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) = ( ( x ( 2nd ` F ) y ) o. ( _I |` ( x ( Hom ` C ) y ) ) ) ) |
33 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
34 |
12
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
35 |
3 28 33 34 29 30
|
funcf2 |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
36 |
|
fcoi1 |
|- ( ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) -> ( ( x ( 2nd ` F ) y ) o. ( _I |` ( x ( Hom ` C ) y ) ) ) = ( x ( 2nd ` F ) y ) ) |
37 |
35 36
|
syl |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( x ( 2nd ` F ) y ) o. ( _I |` ( x ( Hom ` C ) y ) ) ) = ( x ( 2nd ` F ) y ) ) |
38 |
32 37
|
eqtrd |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) = ( x ( 2nd ` F ) y ) ) |
39 |
38
|
mpoeq3dva |
|- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
40 |
3 12
|
funcfn2 |
|- ( ph -> ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
41 |
|
fnov |
|- ( ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
42 |
40 41
|
sylib |
|- ( ph -> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
43 |
39 42
|
eqtr4d |
|- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) ) = ( 2nd ` F ) ) |
44 |
16 43
|
opeq12d |
|- ( ph -> <. ( ( 1st ` F ) o. ( 1st ` I ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) ) >. = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
45 |
2
|
idfucl |
|- ( C e. Cat -> I e. ( C Func C ) ) |
46 |
6 45
|
syl |
|- ( ph -> I e. ( C Func C ) ) |
47 |
3 46 1
|
cofuval |
|- ( ph -> ( F o.func I ) = <. ( ( 1st ` F ) o. ( 1st ` I ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) ) >. ) |
48 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
49 |
10 1 48
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
50 |
44 47 49
|
3eqtr4d |
|- ( ph -> ( F o.func I ) = F ) |