Step |
Hyp |
Ref |
Expression |
1 |
|
cofuval2.b |
|- B = ( Base ` C ) |
2 |
|
cofuval2.f |
|- ( ph -> F ( C Func D ) G ) |
3 |
|
cofuval2.x |
|- ( ph -> H ( D Func E ) K ) |
4 |
|
df-br |
|- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
5 |
2 4
|
sylib |
|- ( ph -> <. F , G >. e. ( C Func D ) ) |
6 |
|
df-br |
|- ( H ( D Func E ) K <-> <. H , K >. e. ( D Func E ) ) |
7 |
3 6
|
sylib |
|- ( ph -> <. H , K >. e. ( D Func E ) ) |
8 |
1 5 7
|
cofuval |
|- ( ph -> ( <. H , K >. o.func <. F , G >. ) = <. ( ( 1st ` <. H , K >. ) o. ( 1st ` <. F , G >. ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) ) >. ) |
9 |
|
relfunc |
|- Rel ( D Func E ) |
10 |
|
brrelex12 |
|- ( ( Rel ( D Func E ) /\ H ( D Func E ) K ) -> ( H e. _V /\ K e. _V ) ) |
11 |
9 3 10
|
sylancr |
|- ( ph -> ( H e. _V /\ K e. _V ) ) |
12 |
|
op1stg |
|- ( ( H e. _V /\ K e. _V ) -> ( 1st ` <. H , K >. ) = H ) |
13 |
11 12
|
syl |
|- ( ph -> ( 1st ` <. H , K >. ) = H ) |
14 |
|
relfunc |
|- Rel ( C Func D ) |
15 |
|
brrelex12 |
|- ( ( Rel ( C Func D ) /\ F ( C Func D ) G ) -> ( F e. _V /\ G e. _V ) ) |
16 |
14 2 15
|
sylancr |
|- ( ph -> ( F e. _V /\ G e. _V ) ) |
17 |
|
op1stg |
|- ( ( F e. _V /\ G e. _V ) -> ( 1st ` <. F , G >. ) = F ) |
18 |
16 17
|
syl |
|- ( ph -> ( 1st ` <. F , G >. ) = F ) |
19 |
13 18
|
coeq12d |
|- ( ph -> ( ( 1st ` <. H , K >. ) o. ( 1st ` <. F , G >. ) ) = ( H o. F ) ) |
20 |
|
op2ndg |
|- ( ( H e. _V /\ K e. _V ) -> ( 2nd ` <. H , K >. ) = K ) |
21 |
11 20
|
syl |
|- ( ph -> ( 2nd ` <. H , K >. ) = K ) |
22 |
21
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( 2nd ` <. H , K >. ) = K ) |
23 |
18
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( 1st ` <. F , G >. ) = F ) |
24 |
23
|
fveq1d |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( ( 1st ` <. F , G >. ) ` x ) = ( F ` x ) ) |
25 |
23
|
fveq1d |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( ( 1st ` <. F , G >. ) ` y ) = ( F ` y ) ) |
26 |
22 24 25
|
oveq123d |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) = ( ( F ` x ) K ( F ` y ) ) ) |
27 |
|
op2ndg |
|- ( ( F e. _V /\ G e. _V ) -> ( 2nd ` <. F , G >. ) = G ) |
28 |
16 27
|
syl |
|- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
29 |
28
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( 2nd ` <. F , G >. ) = G ) |
30 |
29
|
oveqd |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x ( 2nd ` <. F , G >. ) y ) = ( x G y ) ) |
31 |
26 30
|
coeq12d |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) = ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) |
32 |
31
|
mpoeq3dva |
|- ( ph -> ( x e. B , y e. B |-> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) ) = ( x e. B , y e. B |-> ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) ) |
33 |
19 32
|
opeq12d |
|- ( ph -> <. ( ( 1st ` <. H , K >. ) o. ( 1st ` <. F , G >. ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) ) >. = <. ( H o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) >. ) |
34 |
8 33
|
eqtrd |
|- ( ph -> ( <. H , K >. o.func <. F , G >. ) = <. ( H o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) >. ) |