| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cofuval2.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							cofuval2.f | 
							 |-  ( ph -> F ( C Func D ) G )  | 
						
						
							| 3 | 
							
								
							 | 
							cofuval2.x | 
							 |-  ( ph -> H ( D Func E ) K )  | 
						
						
							| 4 | 
							
								
							 | 
							df-br | 
							 |-  ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							sylib | 
							 |-  ( ph -> <. F , G >. e. ( C Func D ) )  | 
						
						
							| 6 | 
							
								
							 | 
							df-br | 
							 |-  ( H ( D Func E ) K <-> <. H , K >. e. ( D Func E ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							sylib | 
							 |-  ( ph -> <. H , K >. e. ( D Func E ) )  | 
						
						
							| 8 | 
							
								1 5 7
							 | 
							cofuval | 
							 |-  ( ph -> ( <. H , K >. o.func <. F , G >. ) = <. ( ( 1st ` <. H , K >. ) o. ( 1st ` <. F , G >. ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) ) >. )  | 
						
						
							| 9 | 
							
								
							 | 
							relfunc | 
							 |-  Rel ( D Func E )  | 
						
						
							| 10 | 
							
								
							 | 
							brrelex12 | 
							 |-  ( ( Rel ( D Func E ) /\ H ( D Func E ) K ) -> ( H e. _V /\ K e. _V ) )  | 
						
						
							| 11 | 
							
								9 3 10
							 | 
							sylancr | 
							 |-  ( ph -> ( H e. _V /\ K e. _V ) )  | 
						
						
							| 12 | 
							
								
							 | 
							op1stg | 
							 |-  ( ( H e. _V /\ K e. _V ) -> ( 1st ` <. H , K >. ) = H )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							 |-  ( ph -> ( 1st ` <. H , K >. ) = H )  | 
						
						
							| 14 | 
							
								
							 | 
							relfunc | 
							 |-  Rel ( C Func D )  | 
						
						
							| 15 | 
							
								
							 | 
							brrelex12 | 
							 |-  ( ( Rel ( C Func D ) /\ F ( C Func D ) G ) -> ( F e. _V /\ G e. _V ) )  | 
						
						
							| 16 | 
							
								14 2 15
							 | 
							sylancr | 
							 |-  ( ph -> ( F e. _V /\ G e. _V ) )  | 
						
						
							| 17 | 
							
								
							 | 
							op1stg | 
							 |-  ( ( F e. _V /\ G e. _V ) -> ( 1st ` <. F , G >. ) = F )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( ph -> ( 1st ` <. F , G >. ) = F )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							coeq12d | 
							 |-  ( ph -> ( ( 1st ` <. H , K >. ) o. ( 1st ` <. F , G >. ) ) = ( H o. F ) )  | 
						
						
							| 20 | 
							
								
							 | 
							op2ndg | 
							 |-  ( ( H e. _V /\ K e. _V ) -> ( 2nd ` <. H , K >. ) = K )  | 
						
						
							| 21 | 
							
								11 20
							 | 
							syl | 
							 |-  ( ph -> ( 2nd ` <. H , K >. ) = K )  | 
						
						
							| 22 | 
							
								21
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( 2nd ` <. H , K >. ) = K )  | 
						
						
							| 23 | 
							
								18
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( 1st ` <. F , G >. ) = F )  | 
						
						
							| 24 | 
							
								23
							 | 
							fveq1d | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( ( 1st ` <. F , G >. ) ` x ) = ( F ` x ) )  | 
						
						
							| 25 | 
							
								23
							 | 
							fveq1d | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( ( 1st ` <. F , G >. ) ` y ) = ( F ` y ) )  | 
						
						
							| 26 | 
							
								22 24 25
							 | 
							oveq123d | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) = ( ( F ` x ) K ( F ` y ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							op2ndg | 
							 |-  ( ( F e. _V /\ G e. _V ) -> ( 2nd ` <. F , G >. ) = G )  | 
						
						
							| 28 | 
							
								16 27
							 | 
							syl | 
							 |-  ( ph -> ( 2nd ` <. F , G >. ) = G )  | 
						
						
							| 29 | 
							
								28
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( 2nd ` <. F , G >. ) = G )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveqd | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( x ( 2nd ` <. F , G >. ) y ) = ( x G y ) )  | 
						
						
							| 31 | 
							
								26 30
							 | 
							coeq12d | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) = ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							mpoeq3dva | 
							 |-  ( ph -> ( x e. B , y e. B |-> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) ) = ( x e. B , y e. B |-> ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) )  | 
						
						
							| 33 | 
							
								19 32
							 | 
							opeq12d | 
							 |-  ( ph -> <. ( ( 1st ` <. H , K >. ) o. ( 1st ` <. F , G >. ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) ) >. = <. ( H o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) >. )  | 
						
						
							| 34 | 
							
								8 33
							 | 
							eqtrd | 
							 |-  ( ph -> ( <. H , K >. o.func <. F , G >. ) = <. ( H o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) >. )  |