Step |
Hyp |
Ref |
Expression |
1 |
|
relco |
|- Rel ( A o. _I ) |
2 |
|
vex |
|- x e. _V |
3 |
|
vex |
|- y e. _V |
4 |
2 3
|
opelco |
|- ( <. x , y >. e. ( A o. _I ) <-> E. z ( x _I z /\ z A y ) ) |
5 |
|
vex |
|- z e. _V |
6 |
5
|
ideq |
|- ( x _I z <-> x = z ) |
7 |
|
equcom |
|- ( x = z <-> z = x ) |
8 |
6 7
|
bitri |
|- ( x _I z <-> z = x ) |
9 |
8
|
anbi1i |
|- ( ( x _I z /\ z A y ) <-> ( z = x /\ z A y ) ) |
10 |
9
|
exbii |
|- ( E. z ( x _I z /\ z A y ) <-> E. z ( z = x /\ z A y ) ) |
11 |
|
breq1 |
|- ( z = x -> ( z A y <-> x A y ) ) |
12 |
11
|
equsexvw |
|- ( E. z ( z = x /\ z A y ) <-> x A y ) |
13 |
10 12
|
bitri |
|- ( E. z ( x _I z /\ z A y ) <-> x A y ) |
14 |
4 13
|
bitri |
|- ( <. x , y >. e. ( A o. _I ) <-> x A y ) |
15 |
|
df-br |
|- ( x A y <-> <. x , y >. e. A ) |
16 |
14 15
|
bitri |
|- ( <. x , y >. e. ( A o. _I ) <-> <. x , y >. e. A ) |
17 |
16
|
eqrelriv |
|- ( ( Rel ( A o. _I ) /\ Rel A ) -> ( A o. _I ) = A ) |
18 |
1 17
|
mpan |
|- ( Rel A -> ( A o. _I ) = A ) |