Step |
Hyp |
Ref |
Expression |
1 |
|
dfrel2 |
|- ( Rel A <-> `' `' A = A ) |
2 |
|
cnvco |
|- `' ( `' A o. _I ) = ( `' _I o. `' `' A ) |
3 |
|
relcnv |
|- Rel `' A |
4 |
|
coi1 |
|- ( Rel `' A -> ( `' A o. _I ) = `' A ) |
5 |
3 4
|
ax-mp |
|- ( `' A o. _I ) = `' A |
6 |
5
|
cnveqi |
|- `' ( `' A o. _I ) = `' `' A |
7 |
2 6
|
eqtr3i |
|- ( `' _I o. `' `' A ) = `' `' A |
8 |
|
cnvi |
|- `' _I = _I |
9 |
|
coeq2 |
|- ( `' `' A = A -> ( `' _I o. `' `' A ) = ( `' _I o. A ) ) |
10 |
|
coeq1 |
|- ( `' _I = _I -> ( `' _I o. A ) = ( _I o. A ) ) |
11 |
9 10
|
sylan9eq |
|- ( ( `' `' A = A /\ `' _I = _I ) -> ( `' _I o. `' `' A ) = ( _I o. A ) ) |
12 |
8 11
|
mpan2 |
|- ( `' `' A = A -> ( `' _I o. `' `' A ) = ( _I o. A ) ) |
13 |
|
id |
|- ( `' `' A = A -> `' `' A = A ) |
14 |
7 12 13
|
3eqtr3a |
|- ( `' `' A = A -> ( _I o. A ) = A ) |
15 |
1 14
|
sylbi |
|- ( Rel A -> ( _I o. A ) = A ) |