| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfrel2 |
|- ( Rel A <-> `' `' A = A ) |
| 2 |
|
cnvco |
|- `' ( `' A o. _I ) = ( `' _I o. `' `' A ) |
| 3 |
|
relcnv |
|- Rel `' A |
| 4 |
|
coi1 |
|- ( Rel `' A -> ( `' A o. _I ) = `' A ) |
| 5 |
3 4
|
ax-mp |
|- ( `' A o. _I ) = `' A |
| 6 |
5
|
cnveqi |
|- `' ( `' A o. _I ) = `' `' A |
| 7 |
2 6
|
eqtr3i |
|- ( `' _I o. `' `' A ) = `' `' A |
| 8 |
|
cnvi |
|- `' _I = _I |
| 9 |
|
coeq2 |
|- ( `' `' A = A -> ( `' _I o. `' `' A ) = ( `' _I o. A ) ) |
| 10 |
|
coeq1 |
|- ( `' _I = _I -> ( `' _I o. A ) = ( _I o. A ) ) |
| 11 |
9 10
|
sylan9eq |
|- ( ( `' `' A = A /\ `' _I = _I ) -> ( `' _I o. `' `' A ) = ( _I o. A ) ) |
| 12 |
8 11
|
mpan2 |
|- ( `' `' A = A -> ( `' _I o. `' `' A ) = ( _I o. A ) ) |
| 13 |
|
id |
|- ( `' `' A = A -> `' `' A = A ) |
| 14 |
7 12 13
|
3eqtr3a |
|- ( `' `' A = A -> ( _I o. A ) = A ) |
| 15 |
1 14
|
sylbi |
|- ( Rel A -> ( _I o. A ) = A ) |