Step |
Hyp |
Ref |
Expression |
1 |
|
tglineintmo.p |
|- P = ( Base ` G ) |
2 |
|
tglineintmo.i |
|- I = ( Itv ` G ) |
3 |
|
tglineintmo.l |
|- L = ( LineG ` G ) |
4 |
|
tglineintmo.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
colline.1 |
|- ( ph -> X e. P ) |
6 |
|
colline.2 |
|- ( ph -> Y e. P ) |
7 |
|
colline.3 |
|- ( ph -> Z e. P ) |
8 |
|
colline.4 |
|- ( ph -> 2 <_ ( # ` P ) ) |
9 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> G e. TarskiG ) |
10 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> X e. P ) |
11 |
|
simplr |
|- ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> x e. P ) |
12 |
|
simpr |
|- ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> X =/= x ) |
13 |
1 2 3 9 10 11 12
|
tgelrnln |
|- ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> ( X L x ) e. ran L ) |
14 |
1 2 3 9 10 11 12
|
tglinerflx1 |
|- ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> X e. ( X L x ) ) |
15 |
|
simp-4r |
|- ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> Y = Z ) |
16 |
|
simpllr |
|- ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> X = Z ) |
17 |
16 14
|
eqeltrrd |
|- ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> Z e. ( X L x ) ) |
18 |
15 17
|
eqeltrd |
|- ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> Y e. ( X L x ) ) |
19 |
|
eleq2 |
|- ( a = ( X L x ) -> ( X e. a <-> X e. ( X L x ) ) ) |
20 |
|
eleq2 |
|- ( a = ( X L x ) -> ( Y e. a <-> Y e. ( X L x ) ) ) |
21 |
|
eleq2 |
|- ( a = ( X L x ) -> ( Z e. a <-> Z e. ( X L x ) ) ) |
22 |
19 20 21
|
3anbi123d |
|- ( a = ( X L x ) -> ( ( X e. a /\ Y e. a /\ Z e. a ) <-> ( X e. ( X L x ) /\ Y e. ( X L x ) /\ Z e. ( X L x ) ) ) ) |
23 |
22
|
rspcev |
|- ( ( ( X L x ) e. ran L /\ ( X e. ( X L x ) /\ Y e. ( X L x ) /\ Z e. ( X L x ) ) ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) |
24 |
13 14 18 17 23
|
syl13anc |
|- ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) |
25 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
26 |
1 25 2 4 8 5
|
tglowdim1i |
|- ( ph -> E. x e. P X =/= x ) |
27 |
26
|
ad2antrr |
|- ( ( ( ph /\ Y = Z ) /\ X = Z ) -> E. x e. P X =/= x ) |
28 |
24 27
|
r19.29a |
|- ( ( ( ph /\ Y = Z ) /\ X = Z ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) |
29 |
4
|
ad2antrr |
|- ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> G e. TarskiG ) |
30 |
5
|
ad2antrr |
|- ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> X e. P ) |
31 |
7
|
ad2antrr |
|- ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> Z e. P ) |
32 |
|
simpr |
|- ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> X =/= Z ) |
33 |
1 2 3 29 30 31 32
|
tgelrnln |
|- ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> ( X L Z ) e. ran L ) |
34 |
1 2 3 29 30 31 32
|
tglinerflx1 |
|- ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> X e. ( X L Z ) ) |
35 |
|
simplr |
|- ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> Y = Z ) |
36 |
1 2 3 29 30 31 32
|
tglinerflx2 |
|- ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> Z e. ( X L Z ) ) |
37 |
35 36
|
eqeltrd |
|- ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> Y e. ( X L Z ) ) |
38 |
|
eleq2 |
|- ( a = ( X L Z ) -> ( X e. a <-> X e. ( X L Z ) ) ) |
39 |
|
eleq2 |
|- ( a = ( X L Z ) -> ( Y e. a <-> Y e. ( X L Z ) ) ) |
40 |
|
eleq2 |
|- ( a = ( X L Z ) -> ( Z e. a <-> Z e. ( X L Z ) ) ) |
41 |
38 39 40
|
3anbi123d |
|- ( a = ( X L Z ) -> ( ( X e. a /\ Y e. a /\ Z e. a ) <-> ( X e. ( X L Z ) /\ Y e. ( X L Z ) /\ Z e. ( X L Z ) ) ) ) |
42 |
41
|
rspcev |
|- ( ( ( X L Z ) e. ran L /\ ( X e. ( X L Z ) /\ Y e. ( X L Z ) /\ Z e. ( X L Z ) ) ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) |
43 |
33 34 37 36 42
|
syl13anc |
|- ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) |
44 |
28 43
|
pm2.61dane |
|- ( ( ph /\ Y = Z ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) |
45 |
44
|
adantlr |
|- ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y = Z ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) |
46 |
|
simpll |
|- ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> ph ) |
47 |
|
simpr |
|- ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> Y =/= Z ) |
48 |
47
|
neneqd |
|- ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> -. Y = Z ) |
49 |
|
simplr |
|- ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> ( X e. ( Y L Z ) \/ Y = Z ) ) |
50 |
|
orel2 |
|- ( -. Y = Z -> ( ( X e. ( Y L Z ) \/ Y = Z ) -> X e. ( Y L Z ) ) ) |
51 |
48 49 50
|
sylc |
|- ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> X e. ( Y L Z ) ) |
52 |
4
|
ad2antrr |
|- ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> G e. TarskiG ) |
53 |
6
|
ad2antrr |
|- ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> Y e. P ) |
54 |
7
|
ad2antrr |
|- ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> Z e. P ) |
55 |
|
simpr |
|- ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> Y =/= Z ) |
56 |
1 2 3 52 53 54 55
|
tgelrnln |
|- ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> ( Y L Z ) e. ran L ) |
57 |
46 51 47 56
|
syl21anc |
|- ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> ( Y L Z ) e. ran L ) |
58 |
1 2 3 52 53 54 55
|
tglinerflx1 |
|- ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> Y e. ( Y L Z ) ) |
59 |
46 51 47 58
|
syl21anc |
|- ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> Y e. ( Y L Z ) ) |
60 |
1 2 3 52 53 54 55
|
tglinerflx2 |
|- ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> Z e. ( Y L Z ) ) |
61 |
46 51 47 60
|
syl21anc |
|- ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> Z e. ( Y L Z ) ) |
62 |
|
eleq2 |
|- ( a = ( Y L Z ) -> ( X e. a <-> X e. ( Y L Z ) ) ) |
63 |
|
eleq2 |
|- ( a = ( Y L Z ) -> ( Y e. a <-> Y e. ( Y L Z ) ) ) |
64 |
|
eleq2 |
|- ( a = ( Y L Z ) -> ( Z e. a <-> Z e. ( Y L Z ) ) ) |
65 |
62 63 64
|
3anbi123d |
|- ( a = ( Y L Z ) -> ( ( X e. a /\ Y e. a /\ Z e. a ) <-> ( X e. ( Y L Z ) /\ Y e. ( Y L Z ) /\ Z e. ( Y L Z ) ) ) ) |
66 |
65
|
rspcev |
|- ( ( ( Y L Z ) e. ran L /\ ( X e. ( Y L Z ) /\ Y e. ( Y L Z ) /\ Z e. ( Y L Z ) ) ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) |
67 |
57 51 59 61 66
|
syl13anc |
|- ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) |
68 |
45 67
|
pm2.61dane |
|- ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) |
69 |
|
df-ne |
|- ( Y =/= Z <-> -. Y = Z ) |
70 |
|
simplr1 |
|- ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> X e. a ) |
71 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> G e. TarskiG ) |
72 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> Y e. P ) |
73 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> Z e. P ) |
74 |
|
simpr |
|- ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> Y =/= Z ) |
75 |
|
simpllr |
|- ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> a e. ran L ) |
76 |
|
simplr2 |
|- ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> Y e. a ) |
77 |
|
simplr3 |
|- ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> Z e. a ) |
78 |
1 2 3 71 72 73 74 74 75 76 77
|
tglinethru |
|- ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> a = ( Y L Z ) ) |
79 |
70 78
|
eleqtrd |
|- ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> X e. ( Y L Z ) ) |
80 |
79
|
ex |
|- ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) -> ( Y =/= Z -> X e. ( Y L Z ) ) ) |
81 |
69 80
|
syl5bir |
|- ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) -> ( -. Y = Z -> X e. ( Y L Z ) ) ) |
82 |
81
|
orrd |
|- ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) -> ( Y = Z \/ X e. ( Y L Z ) ) ) |
83 |
82
|
orcomd |
|- ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) -> ( X e. ( Y L Z ) \/ Y = Z ) ) |
84 |
83
|
r19.29an |
|- ( ( ph /\ E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) -> ( X e. ( Y L Z ) \/ Y = Z ) ) |
85 |
68 84
|
impbida |
|- ( ph -> ( ( X e. ( Y L Z ) \/ Y = Z ) <-> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) ) |