| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
colmid.m |
|- M = ( S ` X ) |
| 8 |
|
colmid.a |
|- ( ph -> A e. P ) |
| 9 |
|
colmid.b |
|- ( ph -> B e. P ) |
| 10 |
|
colmid.x |
|- ( ph -> X e. P ) |
| 11 |
|
colmid.c |
|- ( ph -> ( X e. ( A L B ) \/ A = B ) ) |
| 12 |
|
colmid.d |
|- ( ph -> ( X .- A ) = ( X .- B ) ) |
| 13 |
|
animorr |
|- ( ( ph /\ A = B ) -> ( B = ( M ` A ) \/ A = B ) ) |
| 14 |
6
|
ad2antrr |
|- ( ( ( ph /\ A =/= B ) /\ X e. ( A I B ) ) -> G e. TarskiG ) |
| 15 |
10
|
ad2antrr |
|- ( ( ( ph /\ A =/= B ) /\ X e. ( A I B ) ) -> X e. P ) |
| 16 |
8
|
ad2antrr |
|- ( ( ( ph /\ A =/= B ) /\ X e. ( A I B ) ) -> A e. P ) |
| 17 |
9
|
ad2antrr |
|- ( ( ( ph /\ A =/= B ) /\ X e. ( A I B ) ) -> B e. P ) |
| 18 |
12
|
ad2antrr |
|- ( ( ( ph /\ A =/= B ) /\ X e. ( A I B ) ) -> ( X .- A ) = ( X .- B ) ) |
| 19 |
18
|
eqcomd |
|- ( ( ( ph /\ A =/= B ) /\ X e. ( A I B ) ) -> ( X .- B ) = ( X .- A ) ) |
| 20 |
|
simpr |
|- ( ( ( ph /\ A =/= B ) /\ X e. ( A I B ) ) -> X e. ( A I B ) ) |
| 21 |
1 2 3 14 16 15 17 20
|
tgbtwncom |
|- ( ( ( ph /\ A =/= B ) /\ X e. ( A I B ) ) -> X e. ( B I A ) ) |
| 22 |
1 2 3 4 5 14 15 7 16 17 19 21
|
ismir |
|- ( ( ( ph /\ A =/= B ) /\ X e. ( A I B ) ) -> B = ( M ` A ) ) |
| 23 |
22
|
orcd |
|- ( ( ( ph /\ A =/= B ) /\ X e. ( A I B ) ) -> ( B = ( M ` A ) \/ A = B ) ) |
| 24 |
6
|
adantr |
|- ( ( ph /\ A e. ( X I B ) ) -> G e. TarskiG ) |
| 25 |
9
|
adantr |
|- ( ( ph /\ A e. ( X I B ) ) -> B e. P ) |
| 26 |
8
|
adantr |
|- ( ( ph /\ A e. ( X I B ) ) -> A e. P ) |
| 27 |
10
|
adantr |
|- ( ( ph /\ A e. ( X I B ) ) -> X e. P ) |
| 28 |
|
simpr |
|- ( ( ph /\ A e. ( X I B ) ) -> A e. ( X I B ) ) |
| 29 |
1 2 3 24 27 26 25 28
|
tgbtwncom |
|- ( ( ph /\ A e. ( X I B ) ) -> A e. ( B I X ) ) |
| 30 |
1 2 3 24 26 27
|
tgbtwntriv1 |
|- ( ( ph /\ A e. ( X I B ) ) -> A e. ( A I X ) ) |
| 31 |
1 2 3 6 10 8 10 9 12
|
tgcgrcomlr |
|- ( ph -> ( A .- X ) = ( B .- X ) ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ A e. ( X I B ) ) -> ( A .- X ) = ( B .- X ) ) |
| 33 |
32
|
eqcomd |
|- ( ( ph /\ A e. ( X I B ) ) -> ( B .- X ) = ( A .- X ) ) |
| 34 |
|
eqidd |
|- ( ( ph /\ A e. ( X I B ) ) -> ( A .- X ) = ( A .- X ) ) |
| 35 |
1 2 3 24 25 26 27 26 26 27 29 30 33 34
|
tgcgrsub |
|- ( ( ph /\ A e. ( X I B ) ) -> ( B .- A ) = ( A .- A ) ) |
| 36 |
1 2 3 24 25 26 26 35
|
axtgcgrid |
|- ( ( ph /\ A e. ( X I B ) ) -> B = A ) |
| 37 |
36
|
eqcomd |
|- ( ( ph /\ A e. ( X I B ) ) -> A = B ) |
| 38 |
37
|
adantlr |
|- ( ( ( ph /\ A =/= B ) /\ A e. ( X I B ) ) -> A = B ) |
| 39 |
38
|
olcd |
|- ( ( ( ph /\ A =/= B ) /\ A e. ( X I B ) ) -> ( B = ( M ` A ) \/ A = B ) ) |
| 40 |
6
|
adantr |
|- ( ( ph /\ B e. ( A I X ) ) -> G e. TarskiG ) |
| 41 |
8
|
adantr |
|- ( ( ph /\ B e. ( A I X ) ) -> A e. P ) |
| 42 |
9
|
adantr |
|- ( ( ph /\ B e. ( A I X ) ) -> B e. P ) |
| 43 |
10
|
adantr |
|- ( ( ph /\ B e. ( A I X ) ) -> X e. P ) |
| 44 |
|
simpr |
|- ( ( ph /\ B e. ( A I X ) ) -> B e. ( A I X ) ) |
| 45 |
1 2 3 40 42 43
|
tgbtwntriv1 |
|- ( ( ph /\ B e. ( A I X ) ) -> B e. ( B I X ) ) |
| 46 |
31
|
adantr |
|- ( ( ph /\ B e. ( A I X ) ) -> ( A .- X ) = ( B .- X ) ) |
| 47 |
|
eqidd |
|- ( ( ph /\ B e. ( A I X ) ) -> ( B .- X ) = ( B .- X ) ) |
| 48 |
1 2 3 40 41 42 43 42 42 43 44 45 46 47
|
tgcgrsub |
|- ( ( ph /\ B e. ( A I X ) ) -> ( A .- B ) = ( B .- B ) ) |
| 49 |
1 2 3 40 41 42 42 48
|
axtgcgrid |
|- ( ( ph /\ B e. ( A I X ) ) -> A = B ) |
| 50 |
49
|
adantlr |
|- ( ( ( ph /\ A =/= B ) /\ B e. ( A I X ) ) -> A = B ) |
| 51 |
50
|
olcd |
|- ( ( ( ph /\ A =/= B ) /\ B e. ( A I X ) ) -> ( B = ( M ` A ) \/ A = B ) ) |
| 52 |
|
df-ne |
|- ( A =/= B <-> -. A = B ) |
| 53 |
11
|
orcomd |
|- ( ph -> ( A = B \/ X e. ( A L B ) ) ) |
| 54 |
53
|
orcanai |
|- ( ( ph /\ -. A = B ) -> X e. ( A L B ) ) |
| 55 |
52 54
|
sylan2b |
|- ( ( ph /\ A =/= B ) -> X e. ( A L B ) ) |
| 56 |
6
|
adantr |
|- ( ( ph /\ A =/= B ) -> G e. TarskiG ) |
| 57 |
8
|
adantr |
|- ( ( ph /\ A =/= B ) -> A e. P ) |
| 58 |
9
|
adantr |
|- ( ( ph /\ A =/= B ) -> B e. P ) |
| 59 |
|
simpr |
|- ( ( ph /\ A =/= B ) -> A =/= B ) |
| 60 |
10
|
adantr |
|- ( ( ph /\ A =/= B ) -> X e. P ) |
| 61 |
1 4 3 56 57 58 59 60
|
tgellng |
|- ( ( ph /\ A =/= B ) -> ( X e. ( A L B ) <-> ( X e. ( A I B ) \/ A e. ( X I B ) \/ B e. ( A I X ) ) ) ) |
| 62 |
55 61
|
mpbid |
|- ( ( ph /\ A =/= B ) -> ( X e. ( A I B ) \/ A e. ( X I B ) \/ B e. ( A I X ) ) ) |
| 63 |
23 39 51 62
|
mpjao3dan |
|- ( ( ph /\ A =/= B ) -> ( B = ( M ` A ) \/ A = B ) ) |
| 64 |
13 63
|
pm2.61dane |
|- ( ph -> ( B = ( M ` A ) \/ A = B ) ) |