Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
|- P = ( Base ` G ) |
2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
colperpexlem.s |
|- S = ( pInvG ` G ) |
7 |
|
colperpexlem.m |
|- M = ( S ` A ) |
8 |
|
colperpexlem.n |
|- N = ( S ` B ) |
9 |
|
colperpexlem.k |
|- K = ( S ` Q ) |
10 |
|
colperpexlem.a |
|- ( ph -> A e. P ) |
11 |
|
colperpexlem.b |
|- ( ph -> B e. P ) |
12 |
|
colperpexlem.c |
|- ( ph -> C e. P ) |
13 |
|
colperpexlem.q |
|- ( ph -> Q e. P ) |
14 |
|
colperpexlem.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
15 |
|
colperpexlem.2 |
|- ( ph -> ( K ` ( M ` C ) ) = ( N ` C ) ) |
16 |
1 2 3 4 6 5 10 7 13
|
mircl |
|- ( ph -> ( M ` Q ) e. P ) |
17 |
1 2 3 4 6 5 10 7 12
|
mircl |
|- ( ph -> ( M ` C ) e. P ) |
18 |
|
eqid |
|- ( S ` B ) = ( S ` B ) |
19 |
1 2 3 4 6 5 11 18 12
|
mircl |
|- ( ph -> ( ( S ` B ) ` C ) e. P ) |
20 |
1 2 3 4 6 5 10 7 19
|
mircl |
|- ( ph -> ( M ` ( ( S ` B ) ` C ) ) e. P ) |
21 |
1 2 3 4 6 5 11 8 12
|
mircl |
|- ( ph -> ( N ` C ) e. P ) |
22 |
15 21
|
eqeltrd |
|- ( ph -> ( K ` ( M ` C ) ) e. P ) |
23 |
1 2 3 4 6 5 13 9 17
|
mirbtwn |
|- ( ph -> Q e. ( ( K ` ( M ` C ) ) I ( M ` C ) ) ) |
24 |
1 2 3 5 22 13 17 23
|
tgbtwncom |
|- ( ph -> Q e. ( ( M ` C ) I ( K ` ( M ` C ) ) ) ) |
25 |
8
|
fveq1i |
|- ( N ` C ) = ( ( S ` B ) ` C ) |
26 |
15 25
|
eqtrdi |
|- ( ph -> ( K ` ( M ` C ) ) = ( ( S ` B ) ` C ) ) |
27 |
26
|
oveq2d |
|- ( ph -> ( ( M ` C ) I ( K ` ( M ` C ) ) ) = ( ( M ` C ) I ( ( S ` B ) ` C ) ) ) |
28 |
24 27
|
eleqtrd |
|- ( ph -> Q e. ( ( M ` C ) I ( ( S ` B ) ` C ) ) ) |
29 |
1 2 3 5 17 13 19 28
|
tgbtwncom |
|- ( ph -> Q e. ( ( ( S ` B ) ` C ) I ( M ` C ) ) ) |
30 |
1 2 3 4 6 5 10 7 19 13 17 29
|
mirbtwni |
|- ( ph -> ( M ` Q ) e. ( ( M ` ( ( S ` B ) ` C ) ) I ( M ` ( M ` C ) ) ) ) |
31 |
1 2 3 4 6 5 10 7 12
|
mirmir |
|- ( ph -> ( M ` ( M ` C ) ) = C ) |
32 |
31
|
oveq2d |
|- ( ph -> ( ( M ` ( ( S ` B ) ` C ) ) I ( M ` ( M ` C ) ) ) = ( ( M ` ( ( S ` B ) ` C ) ) I C ) ) |
33 |
30 32
|
eleqtrd |
|- ( ph -> ( M ` Q ) e. ( ( M ` ( ( S ` B ) ` C ) ) I C ) ) |
34 |
1 2 3 5 17 19
|
axtgcgrrflx |
|- ( ph -> ( ( M ` C ) .- ( ( S ` B ) ` C ) ) = ( ( ( S ` B ) ` C ) .- ( M ` C ) ) ) |
35 |
1 2 3 4 6 5 10 7 19 17
|
miriso |
|- ( ph -> ( ( M ` ( ( S ` B ) ` C ) ) .- ( M ` ( M ` C ) ) ) = ( ( ( S ` B ) ` C ) .- ( M ` C ) ) ) |
36 |
31
|
oveq2d |
|- ( ph -> ( ( M ` ( ( S ` B ) ` C ) ) .- ( M ` ( M ` C ) ) ) = ( ( M ` ( ( S ` B ) ` C ) ) .- C ) ) |
37 |
34 35 36
|
3eqtr2d |
|- ( ph -> ( ( M ` C ) .- ( ( S ` B ) ` C ) ) = ( ( M ` ( ( S ` B ) ` C ) ) .- C ) ) |
38 |
26
|
oveq2d |
|- ( ph -> ( Q .- ( K ` ( M ` C ) ) ) = ( Q .- ( ( S ` B ) ` C ) ) ) |
39 |
1 2 3 4 6 5 13 9 17
|
mircgr |
|- ( ph -> ( Q .- ( K ` ( M ` C ) ) ) = ( Q .- ( M ` C ) ) ) |
40 |
38 39
|
eqtr3d |
|- ( ph -> ( Q .- ( ( S ` B ) ` C ) ) = ( Q .- ( M ` C ) ) ) |
41 |
1 2 3 4 6 5 10 7 13 17
|
miriso |
|- ( ph -> ( ( M ` Q ) .- ( M ` ( M ` C ) ) ) = ( Q .- ( M ` C ) ) ) |
42 |
31
|
oveq2d |
|- ( ph -> ( ( M ` Q ) .- ( M ` ( M ` C ) ) ) = ( ( M ` Q ) .- C ) ) |
43 |
40 41 42
|
3eqtr2d |
|- ( ph -> ( Q .- ( ( S ` B ) ` C ) ) = ( ( M ` Q ) .- C ) ) |
44 |
1 2 3 4 6 5 10 7 11
|
mirmir |
|- ( ph -> ( M ` ( M ` B ) ) = B ) |
45 |
|
eqidd |
|- ( ph -> ( M ` B ) = ( M ` B ) ) |
46 |
|
eqidd |
|- ( ph -> ( M ` C ) = ( M ` C ) ) |
47 |
44 45 46
|
s3eqd |
|- ( ph -> <" ( M ` ( M ` B ) ) ( M ` B ) ( M ` C ) "> = <" B ( M ` B ) ( M ` C ) "> ) |
48 |
1 2 3 4 6 5 10 7 11
|
mircl |
|- ( ph -> ( M ` B ) e. P ) |
49 |
|
simpr |
|- ( ( ph /\ A = B ) -> A = B ) |
50 |
49
|
fveq2d |
|- ( ( ph /\ A = B ) -> ( M ` A ) = ( M ` B ) ) |
51 |
5
|
adantr |
|- ( ( ph /\ A = B ) -> G e. TarskiG ) |
52 |
10
|
adantr |
|- ( ( ph /\ A = B ) -> A e. P ) |
53 |
1 2 3 4 6 51 52 7
|
mircinv |
|- ( ( ph /\ A = B ) -> ( M ` A ) = A ) |
54 |
50 53
|
eqtr3d |
|- ( ( ph /\ A = B ) -> ( M ` B ) = A ) |
55 |
|
eqidd |
|- ( ( ph /\ A = B ) -> B = B ) |
56 |
|
eqidd |
|- ( ( ph /\ A = B ) -> C = C ) |
57 |
54 55 56
|
s3eqd |
|- ( ( ph /\ A = B ) -> <" ( M ` B ) B C "> = <" A B C "> ) |
58 |
14
|
adantr |
|- ( ( ph /\ A = B ) -> <" A B C "> e. ( raG ` G ) ) |
59 |
57 58
|
eqeltrd |
|- ( ( ph /\ A = B ) -> <" ( M ` B ) B C "> e. ( raG ` G ) ) |
60 |
5
|
adantr |
|- ( ( ph /\ A =/= B ) -> G e. TarskiG ) |
61 |
10
|
adantr |
|- ( ( ph /\ A =/= B ) -> A e. P ) |
62 |
11
|
adantr |
|- ( ( ph /\ A =/= B ) -> B e. P ) |
63 |
12
|
adantr |
|- ( ( ph /\ A =/= B ) -> C e. P ) |
64 |
1 2 3 4 6 60 61 7 62
|
mircl |
|- ( ( ph /\ A =/= B ) -> ( M ` B ) e. P ) |
65 |
14
|
adantr |
|- ( ( ph /\ A =/= B ) -> <" A B C "> e. ( raG ` G ) ) |
66 |
|
simpr |
|- ( ( ph /\ A =/= B ) -> A =/= B ) |
67 |
1 2 3 4 6 60 61 7 62
|
mirbtwn |
|- ( ( ph /\ A =/= B ) -> A e. ( ( M ` B ) I B ) ) |
68 |
1 4 3 60 64 62 61 67
|
btwncolg1 |
|- ( ( ph /\ A =/= B ) -> ( A e. ( ( M ` B ) L B ) \/ ( M ` B ) = B ) ) |
69 |
1 4 3 60 64 62 61 68
|
colcom |
|- ( ( ph /\ A =/= B ) -> ( A e. ( B L ( M ` B ) ) \/ B = ( M ` B ) ) ) |
70 |
1 2 3 4 6 60 61 62 63 64 65 66 69
|
ragcol |
|- ( ( ph /\ A =/= B ) -> <" ( M ` B ) B C "> e. ( raG ` G ) ) |
71 |
59 70
|
pm2.61dane |
|- ( ph -> <" ( M ` B ) B C "> e. ( raG ` G ) ) |
72 |
1 2 3 4 6 5 48 11 12 71 7 10
|
mirrag |
|- ( ph -> <" ( M ` ( M ` B ) ) ( M ` B ) ( M ` C ) "> e. ( raG ` G ) ) |
73 |
47 72
|
eqeltrrd |
|- ( ph -> <" B ( M ` B ) ( M ` C ) "> e. ( raG ` G ) ) |
74 |
1 2 3 4 6 5 11 48 17
|
israg |
|- ( ph -> ( <" B ( M ` B ) ( M ` C ) "> e. ( raG ` G ) <-> ( B .- ( M ` C ) ) = ( B .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) ) ) |
75 |
73 74
|
mpbid |
|- ( ph -> ( B .- ( M ` C ) ) = ( B .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) ) |
76 |
1 2 3 4 6 5 10 7 12 11
|
mirmir2 |
|- ( ph -> ( M ` ( ( S ` B ) ` C ) ) = ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) |
77 |
76
|
oveq2d |
|- ( ph -> ( B .- ( M ` ( ( S ` B ) ` C ) ) ) = ( B .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) ) |
78 |
75 77
|
eqtr4d |
|- ( ph -> ( B .- ( M ` C ) ) = ( B .- ( M ` ( ( S ` B ) ` C ) ) ) ) |
79 |
1 2 3 5 11 17 11 20 78
|
tgcgrcomlr |
|- ( ph -> ( ( M ` C ) .- B ) = ( ( M ` ( ( S ` B ) ` C ) ) .- B ) ) |
80 |
1 2 3 4 6 5 11 18 12
|
mircgr |
|- ( ph -> ( B .- ( ( S ` B ) ` C ) ) = ( B .- C ) ) |
81 |
1 2 3 5 11 19 11 12 80
|
tgcgrcomlr |
|- ( ph -> ( ( ( S ` B ) ` C ) .- B ) = ( C .- B ) ) |
82 |
1 2 3 5 17 13 19 11 20 16 12 11 28 33 37 43 79 81
|
tgifscgr |
|- ( ph -> ( Q .- B ) = ( ( M ` Q ) .- B ) ) |
83 |
1 2 3 5 13 11 16 11 82
|
tgcgrcomlr |
|- ( ph -> ( B .- Q ) = ( B .- ( M ` Q ) ) ) |
84 |
7
|
fveq1i |
|- ( M ` Q ) = ( ( S ` A ) ` Q ) |
85 |
84
|
oveq2i |
|- ( B .- ( M ` Q ) ) = ( B .- ( ( S ` A ) ` Q ) ) |
86 |
83 85
|
eqtrdi |
|- ( ph -> ( B .- Q ) = ( B .- ( ( S ` A ) ` Q ) ) ) |
87 |
1 2 3 4 6 5 11 10 13
|
israg |
|- ( ph -> ( <" B A Q "> e. ( raG ` G ) <-> ( B .- Q ) = ( B .- ( ( S ` A ) ` Q ) ) ) ) |
88 |
86 87
|
mpbird |
|- ( ph -> <" B A Q "> e. ( raG ` G ) ) |