Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
|- P = ( Base ` G ) |
2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
colperpexlem.s |
|- S = ( pInvG ` G ) |
7 |
|
colperpexlem.m |
|- M = ( S ` A ) |
8 |
|
colperpexlem.n |
|- N = ( S ` B ) |
9 |
|
colperpexlem.k |
|- K = ( S ` Q ) |
10 |
|
colperpexlem.a |
|- ( ph -> A e. P ) |
11 |
|
colperpexlem.b |
|- ( ph -> B e. P ) |
12 |
|
colperpexlem.c |
|- ( ph -> C e. P ) |
13 |
|
colperpexlem.q |
|- ( ph -> Q e. P ) |
14 |
|
colperpexlem.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
15 |
|
colperpexlem.2 |
|- ( ph -> ( K ` ( M ` C ) ) = ( N ` C ) ) |
16 |
|
colperpexlem2.e |
|- ( ph -> B =/= C ) |
17 |
|
simpr |
|- ( ( ph /\ A = Q ) -> A = Q ) |
18 |
17
|
fveq2d |
|- ( ( ph /\ A = Q ) -> ( S ` A ) = ( S ` Q ) ) |
19 |
18 7 9
|
3eqtr4g |
|- ( ( ph /\ A = Q ) -> M = K ) |
20 |
19
|
fveq1d |
|- ( ( ph /\ A = Q ) -> ( M ` ( M ` C ) ) = ( K ` ( M ` C ) ) ) |
21 |
1 2 3 4 6 5 10 7 12
|
mirmir |
|- ( ph -> ( M ` ( M ` C ) ) = C ) |
22 |
21
|
adantr |
|- ( ( ph /\ A = Q ) -> ( M ` ( M ` C ) ) = C ) |
23 |
15
|
adantr |
|- ( ( ph /\ A = Q ) -> ( K ` ( M ` C ) ) = ( N ` C ) ) |
24 |
20 22 23
|
3eqtr3rd |
|- ( ( ph /\ A = Q ) -> ( N ` C ) = C ) |
25 |
1 2 3 4 6 5 11 8 12
|
mirinv |
|- ( ph -> ( ( N ` C ) = C <-> B = C ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ A = Q ) -> ( ( N ` C ) = C <-> B = C ) ) |
27 |
24 26
|
mpbid |
|- ( ( ph /\ A = Q ) -> B = C ) |
28 |
27
|
ex |
|- ( ph -> ( A = Q -> B = C ) ) |
29 |
28
|
necon3ad |
|- ( ph -> ( B =/= C -> -. A = Q ) ) |
30 |
16 29
|
mpd |
|- ( ph -> -. A = Q ) |
31 |
30
|
neqned |
|- ( ph -> A =/= Q ) |