Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
|- P = ( Base ` G ) |
2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
colperpex.1 |
|- ( ph -> A e. P ) |
7 |
|
colperpex.2 |
|- ( ph -> B e. P ) |
8 |
|
colperpex.3 |
|- ( ph -> C e. P ) |
9 |
|
colperpex.4 |
|- ( ph -> A =/= B ) |
10 |
|
colperpexlem3.1 |
|- ( ph -> -. C e. ( A L B ) ) |
11 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
12 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> G e. TarskiG ) |
13 |
|
eqid |
|- ( ( pInvG ` G ) ` p ) = ( ( pInvG ` G ) ` p ) |
14 |
1 3 4 5 6 7 9
|
tgelrnln |
|- ( ph -> ( A L B ) e. ran L ) |
15 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A L B ) e. ran L ) |
16 |
|
simplr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> x e. ( A L B ) ) |
17 |
1 4 3 12 15 16
|
tglnpt |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> x e. P ) |
18 |
|
eqid |
|- ( ( pInvG ` G ) ` x ) = ( ( pInvG ` G ) ` x ) |
19 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> C e. P ) |
20 |
1 2 3 4 11 12 17 18 19
|
mircl |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. P ) |
21 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> A e. P ) |
22 |
|
eqid |
|- ( ( pInvG ` G ) ` A ) = ( ( pInvG ` G ) ` A ) |
23 |
1 2 3 4 11 12 21 22 19
|
mircl |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( ( ( pInvG ` G ) ` A ) ` C ) e. P ) |
24 |
1 2 3 4 11 12 21 22 19
|
mircgr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A .- ( ( ( pInvG ` G ) ` A ) ` C ) ) = ( A .- C ) ) |
25 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> B e. P ) |
26 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> -. C e. ( A L B ) ) |
27 |
|
nelne2 |
|- ( ( x e. ( A L B ) /\ -. C e. ( A L B ) ) -> x =/= C ) |
28 |
16 26 27
|
syl2anc |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> x =/= C ) |
29 |
1 3 4 12 17 19 28
|
tgelrnln |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( x L C ) e. ran L ) |
30 |
1 3 4 12 17 19 28
|
tglinecom |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( x L C ) = ( C L x ) ) |
31 |
|
simpr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( C L x ) ( perpG ` G ) ( A L B ) ) |
32 |
30 31
|
eqbrtrd |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( x L C ) ( perpG ` G ) ( A L B ) ) |
33 |
1 2 3 4 12 29 15 32
|
perpcom |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A L B ) ( perpG ` G ) ( x L C ) ) |
34 |
1 2 3 4 12 21 25 16 19 33
|
perprag |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> <" A x C "> e. ( raG ` G ) ) |
35 |
1 2 3 4 11 12 21 17 19
|
israg |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( <" A x C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( ( pInvG ` G ) ` x ) ` C ) ) ) ) |
36 |
34 35
|
mpbid |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A .- C ) = ( A .- ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
37 |
24 36
|
eqtr2d |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A .- ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( A .- ( ( ( pInvG ` G ) ` A ) ` C ) ) ) |
38 |
1 2 3 4 11 12 13 20 23 21 37
|
midexlem |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> E. p e. P ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
39 |
12
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> G e. TarskiG ) |
40 |
23
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` A ) ` C ) e. P ) |
41 |
21
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A e. P ) |
42 |
19
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> C e. P ) |
43 |
20
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. P ) |
44 |
17
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. P ) |
45 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. P ) |
46 |
1 2 3 4 11 39 41 22 42
|
mirbtwn |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A e. ( ( ( ( pInvG ` G ) ` A ) ` C ) I C ) ) |
47 |
1 2 3 4 11 39 44 18 42
|
mirbtwn |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. ( ( ( ( pInvG ` G ) ` x ) ` C ) I C ) ) |
48 |
1 2 3 4 11 39 45 13 43
|
mirbtwn |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. ( ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
49 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
50 |
49
|
eqcomd |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` A ) ` C ) ) |
51 |
50
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( ( pInvG ` G ) ` A ) ` C ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
52 |
48 51
|
eleqtrd |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. ( ( ( ( pInvG ` G ) ` A ) ` C ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
53 |
1 2 3 39 40 41 42 43 44 45 46 47 52
|
tgtrisegint |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> E. t e. P ( t e. ( p I C ) /\ t e. ( A I x ) ) ) |
54 |
39
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> G e. TarskiG ) |
55 |
41
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A e. P ) |
56 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. P ) |
57 |
|
simplrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( A I x ) ) |
58 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x = A ) |
59 |
58
|
oveq2d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( A I x ) = ( A I A ) ) |
60 |
57 59
|
eleqtrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( A I A ) ) |
61 |
1 2 3 54 55 56 60
|
axtgbtwnid |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A = t ) |
62 |
61
|
eqcomd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t = A ) |
63 |
62
|
oveq1d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t L p ) = ( A L p ) ) |
64 |
50
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` A ) ` C ) ) |
65 |
58
|
fveq2d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( pInvG ` G ) ` x ) = ( ( pInvG ` G ) ` A ) ) |
66 |
65
|
fveq1d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) = ( ( ( pInvG ` G ) ` A ) ` C ) ) |
67 |
64 66
|
eqtr4d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` x ) ` C ) ) |
68 |
45
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> p e. P ) |
69 |
43
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. P ) |
70 |
1 2 3 4 11 54 68 13 69
|
mirinv |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` x ) ` C ) <-> p = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
71 |
67 70
|
mpbid |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> p = ( ( ( pInvG ` G ) ` x ) ` C ) ) |
72 |
44
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x e. P ) |
73 |
58
|
oveq1d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( x I x ) = ( A I x ) ) |
74 |
57 73
|
eleqtrrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( x I x ) ) |
75 |
1 2 3 54 72 56 74
|
axtgbtwnid |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x = t ) |
76 |
75
|
eqcomd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t = x ) |
77 |
71 76
|
oveq12d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( p L t ) = ( ( ( ( pInvG ` G ) ` x ) ` C ) L x ) ) |
78 |
34
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> <" A x C "> e. ( raG ` G ) ) |
79 |
1 2 3 4 11 39 45 13 43 50
|
mircom |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` A ) ` C ) ) = ( ( ( pInvG ` G ) ` x ) ` C ) ) |
80 |
28
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x =/= C ) |
81 |
1 2 3 4 39 11 22 18 13 41 44 42 45 78 79 80
|
colperpexlem2 |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A =/= p ) |
82 |
81
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A =/= p ) |
83 |
62 82
|
eqnetrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t =/= p ) |
84 |
1 3 4 54 56 68 83
|
tglinecom |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t L p ) = ( p L t ) ) |
85 |
42
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> C e. P ) |
86 |
80
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x =/= C ) |
87 |
54
|
adantr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> G e. TarskiG ) |
88 |
72
|
adantr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> x e. P ) |
89 |
85
|
adantr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> C e. P ) |
90 |
1 2 3 4 11 87 88 18
|
mircinv |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> ( ( ( pInvG ` G ) ` x ) ` x ) = x ) |
91 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> ( ( ( pInvG ` G ) ` x ) ` C ) = x ) |
92 |
90 91
|
eqtr4d |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> ( ( ( pInvG ` G ) ` x ) ` x ) = ( ( ( pInvG ` G ) ` x ) ` C ) ) |
93 |
1 2 3 4 11 87 88 18 88 89 92
|
mireq |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> x = C ) |
94 |
86
|
adantr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> x =/= C ) |
95 |
94
|
neneqd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> -. x = C ) |
96 |
93 95
|
pm2.65da |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> -. ( ( ( pInvG ` G ) ` x ) ` C ) = x ) |
97 |
96
|
neqned |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) =/= x ) |
98 |
47
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x e. ( ( ( ( pInvG ` G ) ` x ) ` C ) I C ) ) |
99 |
1 3 4 54 72 85 69 86 98
|
btwnlng2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. ( x L C ) ) |
100 |
1 3 4 54 72 85 86 69 97 99
|
tglineelsb2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( x L C ) = ( x L ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
101 |
28
|
necomd |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> C =/= x ) |
102 |
101
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> C =/= x ) |
103 |
1 3 4 54 85 72 102
|
tglinecom |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( C L x ) = ( x L C ) ) |
104 |
1 3 4 54 69 72 97
|
tglinecom |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( ( pInvG ` G ) ` x ) ` C ) L x ) = ( x L ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
105 |
100 103 104
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( C L x ) = ( ( ( ( pInvG ` G ) ` x ) ` C ) L x ) ) |
106 |
77 84 105
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t L p ) = ( C L x ) ) |
107 |
63 106
|
eqtr3d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( A L p ) = ( C L x ) ) |
108 |
31
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( C L x ) ( perpG ` G ) ( A L B ) ) |
109 |
107 108
|
eqbrtrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( A L p ) ( perpG ` G ) ( A L B ) ) |
110 |
39
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> G e. TarskiG ) |
111 |
41
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. P ) |
112 |
45
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> p e. P ) |
113 |
81
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A =/= p ) |
114 |
1 3 4 110 111 112 113
|
tgelrnln |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( A L p ) e. ran L ) |
115 |
15
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( A L B ) e. ran L ) |
116 |
1 3 4 110 111 112 113
|
tglinerflx1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. ( A L p ) ) |
117 |
9
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> A =/= B ) |
118 |
1 3 4 12 21 25 117
|
tglinerflx1 |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> A e. ( A L B ) ) |
119 |
118
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. ( A L B ) ) |
120 |
116 119
|
elind |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. ( ( A L p ) i^i ( A L B ) ) ) |
121 |
1 3 4 110 111 112 113
|
tglinerflx2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> p e. ( A L p ) ) |
122 |
16
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> x e. ( A L B ) ) |
123 |
113
|
necomd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> p =/= A ) |
124 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> x =/= A ) |
125 |
44
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> x e. P ) |
126 |
1 2 3 4 39 11 22 18 13 41 44 42 45 78 79
|
colperpexlem1 |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> <" x A p "> e. ( raG ` G ) ) |
127 |
126
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> <" x A p "> e. ( raG ` G ) ) |
128 |
1 2 3 4 11 110 125 111 112 127
|
ragcom |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> <" p A x "> e. ( raG ` G ) ) |
129 |
1 2 3 4 110 114 115 120 121 122 123 124 128
|
ragperp |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( A L p ) ( perpG ` G ) ( A L B ) ) |
130 |
109 129
|
pm2.61dane |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> ( A L p ) ( perpG ` G ) ( A L B ) ) |
131 |
118
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A e. ( A L B ) ) |
132 |
62 131
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( A L B ) ) |
133 |
132
|
orcd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t e. ( A L B ) \/ A = B ) ) |
134 |
25
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> B e. P ) |
135 |
117
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A =/= B ) |
136 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. P ) |
137 |
124
|
necomd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A =/= x ) |
138 |
|
simplrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. ( A I x ) ) |
139 |
1 3 4 110 111 125 136 137 138
|
btwnlng1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. ( A L x ) ) |
140 |
1 3 4 110 111 134 135 125 124 122 136 139
|
tglineeltr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. ( A L B ) ) |
141 |
140
|
orcd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( t e. ( A L B ) \/ A = B ) ) |
142 |
133 141
|
pm2.61dane |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> ( t e. ( A L B ) \/ A = B ) ) |
143 |
39
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> G e. TarskiG ) |
144 |
45
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> p e. P ) |
145 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> t e. P ) |
146 |
42
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> C e. P ) |
147 |
|
simprl |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> t e. ( p I C ) ) |
148 |
1 2 3 143 144 145 146 147
|
tgbtwncom |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> t e. ( C I p ) ) |
149 |
130 142 148
|
jca32 |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |
150 |
149
|
ex |
|- ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) -> ( ( t e. ( p I C ) /\ t e. ( A I x ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) |
151 |
150
|
reximdva |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( E. t e. P ( t e. ( p I C ) /\ t e. ( A I x ) ) -> E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) |
152 |
53 151
|
mpd |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |
153 |
|
r19.42v |
|- ( E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) <-> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |
154 |
152 153
|
sylib |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |
155 |
154
|
ex |
|- ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) -> ( ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) |
156 |
155
|
reximdva |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( E. p e. P ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) |
157 |
38 156
|
mpd |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |
158 |
1 2 3 4 5 14 8 10
|
footex |
|- ( ph -> E. x e. ( A L B ) ( C L x ) ( perpG ` G ) ( A L B ) ) |
159 |
157 158
|
r19.29a |
|- ( ph -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |