Description: Rotating the points defining a line. Part of Theorem 4.11 of Schwabhauser p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tglngval.p | |- P = ( Base ` G ) |
|
| tglngval.l | |- L = ( LineG ` G ) |
||
| tglngval.i | |- I = ( Itv ` G ) |
||
| tglngval.g | |- ( ph -> G e. TarskiG ) |
||
| tglngval.x | |- ( ph -> X e. P ) |
||
| tglngval.y | |- ( ph -> Y e. P ) |
||
| tgcolg.z | |- ( ph -> Z e. P ) |
||
| colrot | |- ( ph -> ( Z e. ( X L Y ) \/ X = Y ) ) |
||
| Assertion | colrot2 | |- ( ph -> ( Y e. ( Z L X ) \/ Z = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | |- P = ( Base ` G ) |
|
| 2 | tglngval.l | |- L = ( LineG ` G ) |
|
| 3 | tglngval.i | |- I = ( Itv ` G ) |
|
| 4 | tglngval.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tglngval.x | |- ( ph -> X e. P ) |
|
| 6 | tglngval.y | |- ( ph -> Y e. P ) |
|
| 7 | tgcolg.z | |- ( ph -> Z e. P ) |
|
| 8 | colrot | |- ( ph -> ( Z e. ( X L Y ) \/ X = Y ) ) |
|
| 9 | 1 2 3 4 5 6 7 8 | colrot1 | |- ( ph -> ( X e. ( Y L Z ) \/ Y = Z ) ) |
| 10 | 1 2 3 4 6 7 5 9 | colrot1 | |- ( ph -> ( Y e. ( Z L X ) \/ Z = X ) ) |