Metamath Proof Explorer


Theorem colrot2

Description: Rotating the points defining a line. Part of Theorem 4.11 of Schwabhauser p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses tglngval.p
|- P = ( Base ` G )
tglngval.l
|- L = ( LineG ` G )
tglngval.i
|- I = ( Itv ` G )
tglngval.g
|- ( ph -> G e. TarskiG )
tglngval.x
|- ( ph -> X e. P )
tglngval.y
|- ( ph -> Y e. P )
tgcolg.z
|- ( ph -> Z e. P )
colrot
|- ( ph -> ( Z e. ( X L Y ) \/ X = Y ) )
Assertion colrot2
|- ( ph -> ( Y e. ( Z L X ) \/ Z = X ) )

Proof

Step Hyp Ref Expression
1 tglngval.p
 |-  P = ( Base ` G )
2 tglngval.l
 |-  L = ( LineG ` G )
3 tglngval.i
 |-  I = ( Itv ` G )
4 tglngval.g
 |-  ( ph -> G e. TarskiG )
5 tglngval.x
 |-  ( ph -> X e. P )
6 tglngval.y
 |-  ( ph -> Y e. P )
7 tgcolg.z
 |-  ( ph -> Z e. P )
8 colrot
 |-  ( ph -> ( Z e. ( X L Y ) \/ X = Y ) )
9 1 2 3 4 5 6 7 8 colrot1
 |-  ( ph -> ( X e. ( Y L Z ) \/ Y = Z ) )
10 1 2 3 4 6 7 5 9 colrot1
 |-  ( ph -> ( Y e. ( Z L X ) \/ Z = X ) )