Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009) (Proof shortened by Wolf Lammen, 29-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | com5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) | |
| Assertion | com15 | |- ( ta -> ( ps -> ( ch -> ( th -> ( ph -> et ) ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | com5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) | |
| 2 | 1 | com5l | |- ( ps -> ( ch -> ( th -> ( ta -> ( ph -> et ) ) ) ) ) | 
| 3 | 2 | com4r | |- ( ta -> ( ps -> ( ch -> ( th -> ( ph -> et ) ) ) ) ) |