Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 . (Contributed by Jeff Hankins, 28-Jun-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | com5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
Assertion | com25 | |- ( ph -> ( ta -> ( ch -> ( th -> ( ps -> et ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
2 | 1 | com24 | |- ( ph -> ( th -> ( ch -> ( ps -> ( ta -> et ) ) ) ) ) |
3 | 2 | com45 | |- ( ph -> ( th -> ( ch -> ( ta -> ( ps -> et ) ) ) ) ) |
4 | 3 | com24 | |- ( ph -> ( ta -> ( ch -> ( th -> ( ps -> et ) ) ) ) ) |