Description: Commutation of antecedents. Swap 3rd and 5th. Deduction associated with com24 . Double deduction associated with com13 . (Contributed by Jeff Hankins, 28-Jun-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | com5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
| Assertion | com35 | |- ( ph -> ( ps -> ( ta -> ( th -> ( ch -> et ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
| 2 | 1 | com34 | |- ( ph -> ( ps -> ( th -> ( ch -> ( ta -> et ) ) ) ) ) |
| 3 | 2 | com45 | |- ( ph -> ( ps -> ( th -> ( ta -> ( ch -> et ) ) ) ) ) |
| 4 | 3 | com34 | |- ( ph -> ( ps -> ( ta -> ( th -> ( ch -> et ) ) ) ) ) |