Description: Commutation of antecedents. Swap 3rd and 5th. Deduction associated with com24 . Double deduction associated with com13 . (Contributed by Jeff Hankins, 28-Jun-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | com5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
Assertion | com35 | |- ( ph -> ( ps -> ( ta -> ( th -> ( ch -> et ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
2 | 1 | com34 | |- ( ph -> ( ps -> ( th -> ( ch -> ( ta -> et ) ) ) ) ) |
3 | 2 | com45 | |- ( ph -> ( ps -> ( th -> ( ta -> ( ch -> et ) ) ) ) ) |
4 | 3 | com34 | |- ( ph -> ( ps -> ( ta -> ( th -> ( ch -> et ) ) ) ) ) |