Metamath Proof Explorer


Theorem com35

Description: Commutation of antecedents. Swap 3rd and 5th. Deduction associated with com24 . Double deduction associated with com13 . (Contributed by Jeff Hankins, 28-Jun-2009)

Ref Expression
Hypothesis com5.1
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
Assertion com35
|- ( ph -> ( ps -> ( ta -> ( th -> ( ch -> et ) ) ) ) )

Proof

Step Hyp Ref Expression
1 com5.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
2 1 com34
 |-  ( ph -> ( ps -> ( th -> ( ch -> ( ta -> et ) ) ) ) )
3 2 com45
 |-  ( ph -> ( ps -> ( th -> ( ta -> ( ch -> et ) ) ) ) )
4 3 com34
 |-  ( ph -> ( ps -> ( ta -> ( th -> ( ch -> et ) ) ) ) )