Metamath Proof Explorer


Theorem com4t

Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994)

Ref Expression
Hypothesis com4.1
|- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
Assertion com4t
|- ( ch -> ( th -> ( ph -> ( ps -> ta ) ) ) )

Proof

Step Hyp Ref Expression
1 com4.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
2 1 com4l
 |-  ( ps -> ( ch -> ( th -> ( ph -> ta ) ) ) )
3 2 com4l
 |-  ( ch -> ( th -> ( ph -> ( ps -> ta ) ) ) )