Metamath Proof Explorer


Theorem com5r

Description: Commutation of antecedents. Rotate right. (Contributed by Wolf Lammen, 29-Jul-2012)

Ref Expression
Hypothesis com5.1
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
Assertion com5r
|- ( ta -> ( ph -> ( ps -> ( ch -> ( th -> et ) ) ) ) )

Proof

Step Hyp Ref Expression
1 com5.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
2 1 com52l
 |-  ( ch -> ( th -> ( ta -> ( ph -> ( ps -> et ) ) ) ) )
3 2 com52l
 |-  ( ta -> ( ph -> ( ps -> ( ch -> ( th -> et ) ) ) ) )