Metamath Proof Explorer


Theorem comfeqval

Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfeqval.b
|- B = ( Base ` C )
comfeqval.h
|- H = ( Hom ` C )
comfeqval.1
|- .x. = ( comp ` C )
comfeqval.2
|- .xb = ( comp ` D )
comfeqval.3
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) )
comfeqval.4
|- ( ph -> ( comf ` C ) = ( comf ` D ) )
comfeqval.x
|- ( ph -> X e. B )
comfeqval.y
|- ( ph -> Y e. B )
comfeqval.z
|- ( ph -> Z e. B )
comfeqval.f
|- ( ph -> F e. ( X H Y ) )
comfeqval.g
|- ( ph -> G e. ( Y H Z ) )
Assertion comfeqval
|- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G ( <. X , Y >. .xb Z ) F ) )

Proof

Step Hyp Ref Expression
1 comfeqval.b
 |-  B = ( Base ` C )
2 comfeqval.h
 |-  H = ( Hom ` C )
3 comfeqval.1
 |-  .x. = ( comp ` C )
4 comfeqval.2
 |-  .xb = ( comp ` D )
5 comfeqval.3
 |-  ( ph -> ( Homf ` C ) = ( Homf ` D ) )
6 comfeqval.4
 |-  ( ph -> ( comf ` C ) = ( comf ` D ) )
7 comfeqval.x
 |-  ( ph -> X e. B )
8 comfeqval.y
 |-  ( ph -> Y e. B )
9 comfeqval.z
 |-  ( ph -> Z e. B )
10 comfeqval.f
 |-  ( ph -> F e. ( X H Y ) )
11 comfeqval.g
 |-  ( ph -> G e. ( Y H Z ) )
12 6 oveqd
 |-  ( ph -> ( <. X , Y >. ( comf ` C ) Z ) = ( <. X , Y >. ( comf ` D ) Z ) )
13 12 oveqd
 |-  ( ph -> ( G ( <. X , Y >. ( comf ` C ) Z ) F ) = ( G ( <. X , Y >. ( comf ` D ) Z ) F ) )
14 eqid
 |-  ( comf ` C ) = ( comf ` C )
15 14 1 2 3 7 8 9 10 11 comfval
 |-  ( ph -> ( G ( <. X , Y >. ( comf ` C ) Z ) F ) = ( G ( <. X , Y >. .x. Z ) F ) )
16 eqid
 |-  ( comf ` D ) = ( comf ` D )
17 eqid
 |-  ( Base ` D ) = ( Base ` D )
18 eqid
 |-  ( Hom ` D ) = ( Hom ` D )
19 5 homfeqbas
 |-  ( ph -> ( Base ` C ) = ( Base ` D ) )
20 1 19 syl5eq
 |-  ( ph -> B = ( Base ` D ) )
21 7 20 eleqtrd
 |-  ( ph -> X e. ( Base ` D ) )
22 8 20 eleqtrd
 |-  ( ph -> Y e. ( Base ` D ) )
23 9 20 eleqtrd
 |-  ( ph -> Z e. ( Base ` D ) )
24 1 2 18 5 7 8 homfeqval
 |-  ( ph -> ( X H Y ) = ( X ( Hom ` D ) Y ) )
25 10 24 eleqtrd
 |-  ( ph -> F e. ( X ( Hom ` D ) Y ) )
26 1 2 18 5 8 9 homfeqval
 |-  ( ph -> ( Y H Z ) = ( Y ( Hom ` D ) Z ) )
27 11 26 eleqtrd
 |-  ( ph -> G e. ( Y ( Hom ` D ) Z ) )
28 16 17 18 4 21 22 23 25 27 comfval
 |-  ( ph -> ( G ( <. X , Y >. ( comf ` D ) Z ) F ) = ( G ( <. X , Y >. .xb Z ) F ) )
29 13 15 28 3eqtr3d
 |-  ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G ( <. X , Y >. .xb Z ) F ) )