Step |
Hyp |
Ref |
Expression |
1 |
|
comfffn.o |
|- O = ( comf ` C ) |
2 |
|
comfffn.b |
|- B = ( Base ` C ) |
3 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
4 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
5 |
1 2 3 4
|
comfffval |
|- O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x ( comp ` C ) y ) f ) ) ) |
6 |
|
ovex |
|- ( ( 2nd ` x ) ( Hom ` C ) y ) e. _V |
7 |
|
fvex |
|- ( ( Hom ` C ) ` x ) e. _V |
8 |
6 7
|
mpoex |
|- ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x ( comp ` C ) y ) f ) ) e. _V |
9 |
5 8
|
fnmpoi |
|- O Fn ( ( B X. B ) X. B ) |