| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							comfffn.o | 
							 |-  O = ( comf ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							comfffn.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` C ) = ( Hom ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` C ) = ( comp ` C )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							comfffval | 
							 |-  O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x ( comp ` C ) y ) f ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ovex | 
							 |-  ( ( 2nd ` x ) ( Hom ` C ) y ) e. _V  | 
						
						
							| 7 | 
							
								
							 | 
							fvex | 
							 |-  ( ( Hom ` C ) ` x ) e. _V  | 
						
						
							| 8 | 
							
								6 7
							 | 
							mpoex | 
							 |-  ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x ( comp ` C ) y ) f ) ) e. _V  | 
						
						
							| 9 | 
							
								5 8
							 | 
							fnmpoi | 
							 |-  O Fn ( ( B X. B ) X. B )  |