| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							comfffval.o | 
							 |-  O = ( comf ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							comfffval.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							comfffval.h | 
							 |-  H = ( Hom ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							comfffval.x | 
							 |-  .x. = ( comp ` C )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							 |-  ( c = C -> ( Base ` c ) = ( Base ` C ) )  | 
						
						
							| 6 | 
							
								5 2
							 | 
							eqtr4di | 
							 |-  ( c = C -> ( Base ` c ) = B )  | 
						
						
							| 7 | 
							
								6
							 | 
							sqxpeqd | 
							 |-  ( c = C -> ( ( Base ` c ) X. ( Base ` c ) ) = ( B X. B ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							 |-  ( c = C -> ( Hom ` c ) = ( Hom ` C ) )  | 
						
						
							| 9 | 
							
								8 3
							 | 
							eqtr4di | 
							 |-  ( c = C -> ( Hom ` c ) = H )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveqd | 
							 |-  ( c = C -> ( ( 2nd ` x ) ( Hom ` c ) y ) = ( ( 2nd ` x ) H y ) )  | 
						
						
							| 11 | 
							
								9
							 | 
							fveq1d | 
							 |-  ( c = C -> ( ( Hom ` c ) ` x ) = ( H ` x ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							 |-  ( c = C -> ( comp ` c ) = ( comp ` C ) )  | 
						
						
							| 13 | 
							
								12 4
							 | 
							eqtr4di | 
							 |-  ( c = C -> ( comp ` c ) = .x. )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveqd | 
							 |-  ( c = C -> ( x ( comp ` c ) y ) = ( x .x. y ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveqd | 
							 |-  ( c = C -> ( g ( x ( comp ` c ) y ) f ) = ( g ( x .x. y ) f ) )  | 
						
						
							| 16 | 
							
								10 11 15
							 | 
							mpoeq123dv | 
							 |-  ( c = C -> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) = ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) )  | 
						
						
							| 17 | 
							
								7 6 16
							 | 
							mpoeq123dv | 
							 |-  ( c = C -> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) , y e. ( Base ` c ) |-> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							df-comf | 
							 |-  comf = ( c e. _V |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) , y e. ( Base ` c ) |-> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) ) )  | 
						
						
							| 19 | 
							
								2
							 | 
							fvexi | 
							 |-  B e. _V  | 
						
						
							| 20 | 
							
								19 19
							 | 
							xpex | 
							 |-  ( B X. B ) e. _V  | 
						
						
							| 21 | 
							
								20 19
							 | 
							mpoex | 
							 |-  ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) e. _V  | 
						
						
							| 22 | 
							
								17 18 21
							 | 
							fvmpt | 
							 |-  ( C e. _V -> ( comf ` C ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							fvprc | 
							 |-  ( -. C e. _V -> ( comf ` C ) = (/) )  | 
						
						
							| 24 | 
							
								
							 | 
							fvprc | 
							 |-  ( -. C e. _V -> ( Base ` C ) = (/) )  | 
						
						
							| 25 | 
							
								2 24
							 | 
							eqtrid | 
							 |-  ( -. C e. _V -> B = (/) )  | 
						
						
							| 26 | 
							
								25
							 | 
							olcd | 
							 |-  ( -. C e. _V -> ( ( B X. B ) = (/) \/ B = (/) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							0mpo0 | 
							 |-  ( ( ( B X. B ) = (/) \/ B = (/) ) -> ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) = (/) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							syl | 
							 |-  ( -. C e. _V -> ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) = (/) )  | 
						
						
							| 29 | 
							
								23 28
							 | 
							eqtr4d | 
							 |-  ( -. C e. _V -> ( comf ` C ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) )  | 
						
						
							| 30 | 
							
								22 29
							 | 
							pm2.61i | 
							 |-  ( comf ` C ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) )  | 
						
						
							| 31 | 
							
								1 30
							 | 
							eqtri | 
							 |-  O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) )  |