Step |
Hyp |
Ref |
Expression |
1 |
|
comfffval.o |
|- O = ( comf ` C ) |
2 |
|
comfffval.b |
|- B = ( Base ` C ) |
3 |
|
comfffval.h |
|- H = ( Hom ` C ) |
4 |
|
comfffval.x |
|- .x. = ( comp ` C ) |
5 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
6 |
5 2
|
eqtr4di |
|- ( c = C -> ( Base ` c ) = B ) |
7 |
6
|
sqxpeqd |
|- ( c = C -> ( ( Base ` c ) X. ( Base ` c ) ) = ( B X. B ) ) |
8 |
|
fveq2 |
|- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
9 |
8 3
|
eqtr4di |
|- ( c = C -> ( Hom ` c ) = H ) |
10 |
9
|
oveqd |
|- ( c = C -> ( ( 2nd ` x ) ( Hom ` c ) y ) = ( ( 2nd ` x ) H y ) ) |
11 |
9
|
fveq1d |
|- ( c = C -> ( ( Hom ` c ) ` x ) = ( H ` x ) ) |
12 |
|
fveq2 |
|- ( c = C -> ( comp ` c ) = ( comp ` C ) ) |
13 |
12 4
|
eqtr4di |
|- ( c = C -> ( comp ` c ) = .x. ) |
14 |
13
|
oveqd |
|- ( c = C -> ( x ( comp ` c ) y ) = ( x .x. y ) ) |
15 |
14
|
oveqd |
|- ( c = C -> ( g ( x ( comp ` c ) y ) f ) = ( g ( x .x. y ) f ) ) |
16 |
10 11 15
|
mpoeq123dv |
|- ( c = C -> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) = ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) |
17 |
7 6 16
|
mpoeq123dv |
|- ( c = C -> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) , y e. ( Base ` c ) |-> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) ) |
18 |
|
df-comf |
|- comf = ( c e. _V |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) , y e. ( Base ` c ) |-> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) ) ) |
19 |
2
|
fvexi |
|- B e. _V |
20 |
19 19
|
xpex |
|- ( B X. B ) e. _V |
21 |
20 19
|
mpoex |
|- ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) e. _V |
22 |
17 18 21
|
fvmpt |
|- ( C e. _V -> ( comf ` C ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) ) |
23 |
|
fvprc |
|- ( -. C e. _V -> ( comf ` C ) = (/) ) |
24 |
|
fvprc |
|- ( -. C e. _V -> ( Base ` C ) = (/) ) |
25 |
2 24
|
eqtrid |
|- ( -. C e. _V -> B = (/) ) |
26 |
25
|
olcd |
|- ( -. C e. _V -> ( ( B X. B ) = (/) \/ B = (/) ) ) |
27 |
|
0mpo0 |
|- ( ( ( B X. B ) = (/) \/ B = (/) ) -> ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) = (/) ) |
28 |
26 27
|
syl |
|- ( -. C e. _V -> ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) = (/) ) |
29 |
23 28
|
eqtr4d |
|- ( -. C e. _V -> ( comf ` C ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) ) |
30 |
22 29
|
pm2.61i |
|- ( comf ` C ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) |
31 |
1 30
|
eqtri |
|- O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) |