| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							comfffn.o | 
							 |-  O = ( comf ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							comfffn.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							comffn.h | 
							 |-  H = ( Hom ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							comffn.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 5 | 
							
								
							 | 
							comffn.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							comffn.z | 
							 |-  ( ph -> Z e. B )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ovex | 
							 |-  ( g ( <. X , Y >. ( comp ` C ) Z ) f ) e. _V  | 
						
						
							| 9 | 
							
								7 8
							 | 
							fnmpoi | 
							 |-  ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) Fn ( ( Y H Z ) X. ( X H Y ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` C ) = ( comp ` C )  | 
						
						
							| 11 | 
							
								1 2 3 10 4 5 6
							 | 
							comffval | 
							 |-  ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							fneq1d | 
							 |-  ( ph -> ( ( <. X , Y >. O Z ) Fn ( ( Y H Z ) X. ( X H Y ) ) <-> ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) Fn ( ( Y H Z ) X. ( X H Y ) ) ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							mpbiri | 
							 |-  ( ph -> ( <. X , Y >. O Z ) Fn ( ( Y H Z ) X. ( X H Y ) ) )  |