Step |
Hyp |
Ref |
Expression |
1 |
|
comfffn.o |
|- O = ( comf ` C ) |
2 |
|
comfffn.b |
|- B = ( Base ` C ) |
3 |
|
comffn.h |
|- H = ( Hom ` C ) |
4 |
|
comffn.x |
|- ( ph -> X e. B ) |
5 |
|
comffn.y |
|- ( ph -> Y e. B ) |
6 |
|
comffn.z |
|- ( ph -> Z e. B ) |
7 |
|
eqid |
|- ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) |
8 |
|
ovex |
|- ( g ( <. X , Y >. ( comp ` C ) Z ) f ) e. _V |
9 |
7 8
|
fnmpoi |
|- ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) Fn ( ( Y H Z ) X. ( X H Y ) ) |
10 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
11 |
1 2 3 10 4 5 6
|
comffval |
|- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) ) |
12 |
11
|
fneq1d |
|- ( ph -> ( ( <. X , Y >. O Z ) Fn ( ( Y H Z ) X. ( X H Y ) ) <-> ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) Fn ( ( Y H Z ) X. ( X H Y ) ) ) ) |
13 |
9 12
|
mpbiri |
|- ( ph -> ( <. X , Y >. O Z ) Fn ( ( Y H Z ) X. ( X H Y ) ) ) |