| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							comfffval.o | 
							 |-  O = ( comf ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							comfffval.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							comfffval.h | 
							 |-  H = ( Hom ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							comfffval.x | 
							 |-  .x. = ( comp ` C )  | 
						
						
							| 5 | 
							
								
							 | 
							comffval.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							comffval.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 7 | 
							
								
							 | 
							comffval.z | 
							 |-  ( ph -> Z e. B )  | 
						
						
							| 8 | 
							
								1 2 3 4
							 | 
							comfffval | 
							 |-  O = ( x e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							a1i | 
							 |-  ( ph -> O = ( x e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> x = <. X , Y >. )  | 
						
						
							| 11 | 
							
								10
							 | 
							fveq2d | 
							 |-  ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` x ) = ( 2nd ` <. X , Y >. ) )  | 
						
						
							| 12 | 
							
								
							 | 
							op2ndg | 
							 |-  ( ( X e. B /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y )  | 
						
						
							| 13 | 
							
								5 6 12
							 | 
							syl2anc | 
							 |-  ( ph -> ( 2nd ` <. X , Y >. ) = Y )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` <. X , Y >. ) = Y )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							eqtrd | 
							 |-  ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` x ) = Y )  | 
						
						
							| 16 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> z = Z )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							oveq12d | 
							 |-  ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( ( 2nd ` x ) H z ) = ( Y H Z ) )  | 
						
						
							| 18 | 
							
								10
							 | 
							fveq2d | 
							 |-  ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( H ` x ) = ( H ` <. X , Y >. ) )  | 
						
						
							| 19 | 
							
								
							 | 
							df-ov | 
							 |-  ( X H Y ) = ( H ` <. X , Y >. )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							eqtr4di | 
							 |-  ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( H ` x ) = ( X H Y ) )  | 
						
						
							| 21 | 
							
								10 16
							 | 
							oveq12d | 
							 |-  ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( x .x. z ) = ( <. X , Y >. .x. Z ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							oveqd | 
							 |-  ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( g ( x .x. z ) f ) = ( g ( <. X , Y >. .x. Z ) f ) )  | 
						
						
							| 23 | 
							
								17 20 22
							 | 
							mpoeq123dv | 
							 |-  ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) )  | 
						
						
							| 24 | 
							
								5 6
							 | 
							opelxpd | 
							 |-  ( ph -> <. X , Y >. e. ( B X. B ) )  | 
						
						
							| 25 | 
							
								
							 | 
							ovex | 
							 |-  ( Y H Z ) e. _V  | 
						
						
							| 26 | 
							
								
							 | 
							ovex | 
							 |-  ( X H Y ) e. _V  | 
						
						
							| 27 | 
							
								25 26
							 | 
							mpoex | 
							 |-  ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) e. _V  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							 |-  ( ph -> ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) e. _V )  | 
						
						
							| 29 | 
							
								9 23 24 7 28
							 | 
							ovmpod | 
							 |-  ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) )  |