Step |
Hyp |
Ref |
Expression |
1 |
|
comfffval.o |
|- O = ( comf ` C ) |
2 |
|
comfffval.b |
|- B = ( Base ` C ) |
3 |
|
comfffval.h |
|- H = ( Hom ` C ) |
4 |
|
comfffval.x |
|- .x. = ( comp ` C ) |
5 |
|
comffval.x |
|- ( ph -> X e. B ) |
6 |
|
comffval.y |
|- ( ph -> Y e. B ) |
7 |
|
comffval.z |
|- ( ph -> Z e. B ) |
8 |
1 2 3 4
|
comfffval |
|- O = ( x e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) ) |
9 |
8
|
a1i |
|- ( ph -> O = ( x e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) ) ) |
10 |
|
simprl |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> x = <. X , Y >. ) |
11 |
10
|
fveq2d |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` x ) = ( 2nd ` <. X , Y >. ) ) |
12 |
|
op2ndg |
|- ( ( X e. B /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) |
13 |
5 6 12
|
syl2anc |
|- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
14 |
13
|
adantr |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` <. X , Y >. ) = Y ) |
15 |
11 14
|
eqtrd |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` x ) = Y ) |
16 |
|
simprr |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> z = Z ) |
17 |
15 16
|
oveq12d |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( ( 2nd ` x ) H z ) = ( Y H Z ) ) |
18 |
10
|
fveq2d |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( H ` x ) = ( H ` <. X , Y >. ) ) |
19 |
|
df-ov |
|- ( X H Y ) = ( H ` <. X , Y >. ) |
20 |
18 19
|
eqtr4di |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( H ` x ) = ( X H Y ) ) |
21 |
10 16
|
oveq12d |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( x .x. z ) = ( <. X , Y >. .x. Z ) ) |
22 |
21
|
oveqd |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( g ( x .x. z ) f ) = ( g ( <. X , Y >. .x. Z ) f ) ) |
23 |
17 20 22
|
mpoeq123dv |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |
24 |
5 6
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( B X. B ) ) |
25 |
|
ovex |
|- ( Y H Z ) e. _V |
26 |
|
ovex |
|- ( X H Y ) e. _V |
27 |
25 26
|
mpoex |
|- ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) e. _V |
28 |
27
|
a1i |
|- ( ph -> ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) e. _V ) |
29 |
9 23 24 7 28
|
ovmpod |
|- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |