Step |
Hyp |
Ref |
Expression |
1 |
|
comfffval2.o |
|- O = ( comf ` C ) |
2 |
|
comfffval2.b |
|- B = ( Base ` C ) |
3 |
|
comfffval2.h |
|- H = ( Homf ` C ) |
4 |
|
comfffval2.x |
|- .x. = ( comp ` C ) |
5 |
|
comffval2.x |
|- ( ph -> X e. B ) |
6 |
|
comffval2.y |
|- ( ph -> Y e. B ) |
7 |
|
comffval2.z |
|- ( ph -> Z e. B ) |
8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
9 |
1 2 8 4 5 6 7
|
comffval |
|- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y ( Hom ` C ) Z ) , f e. ( X ( Hom ` C ) Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |
10 |
3 2 8 6 7
|
homfval |
|- ( ph -> ( Y H Z ) = ( Y ( Hom ` C ) Z ) ) |
11 |
3 2 8 5 6
|
homfval |
|- ( ph -> ( X H Y ) = ( X ( Hom ` C ) Y ) ) |
12 |
|
eqidd |
|- ( ph -> ( g ( <. X , Y >. .x. Z ) f ) = ( g ( <. X , Y >. .x. Z ) f ) ) |
13 |
10 11 12
|
mpoeq123dv |
|- ( ph -> ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) = ( g e. ( Y ( Hom ` C ) Z ) , f e. ( X ( Hom ` C ) Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |
14 |
9 13
|
eqtr4d |
|- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |