Step |
Hyp |
Ref |
Expression |
1 |
|
comfffval.o |
|- O = ( comf ` C ) |
2 |
|
comfffval.b |
|- B = ( Base ` C ) |
3 |
|
comfffval.h |
|- H = ( Hom ` C ) |
4 |
|
comfffval.x |
|- .x. = ( comp ` C ) |
5 |
|
comffval.x |
|- ( ph -> X e. B ) |
6 |
|
comffval.y |
|- ( ph -> Y e. B ) |
7 |
|
comffval.z |
|- ( ph -> Z e. B ) |
8 |
|
comfval.f |
|- ( ph -> F e. ( X H Y ) ) |
9 |
|
comfval.g |
|- ( ph -> G e. ( Y H Z ) ) |
10 |
1 2 3 4 5 6 7
|
comffval |
|- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |
11 |
|
oveq12 |
|- ( ( g = G /\ f = F ) -> ( g ( <. X , Y >. .x. Z ) f ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( g ( <. X , Y >. .x. Z ) f ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
13 |
|
ovexd |
|- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) e. _V ) |
14 |
10 12 9 8 13
|
ovmpod |
|- ( ph -> ( G ( <. X , Y >. O Z ) F ) = ( G ( <. X , Y >. .x. Z ) F ) ) |