Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | comfffval2.o | |- O = ( comf ` C ) |
|
comfffval2.b | |- B = ( Base ` C ) |
||
comfffval2.h | |- H = ( Homf ` C ) |
||
comfffval2.x | |- .x. = ( comp ` C ) |
||
comffval2.x | |- ( ph -> X e. B ) |
||
comffval2.y | |- ( ph -> Y e. B ) |
||
comffval2.z | |- ( ph -> Z e. B ) |
||
comfval2.f | |- ( ph -> F e. ( X H Y ) ) |
||
comfval2.g | |- ( ph -> G e. ( Y H Z ) ) |
||
Assertion | comfval2 | |- ( ph -> ( G ( <. X , Y >. O Z ) F ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffval2.o | |- O = ( comf ` C ) |
|
2 | comfffval2.b | |- B = ( Base ` C ) |
|
3 | comfffval2.h | |- H = ( Homf ` C ) |
|
4 | comfffval2.x | |- .x. = ( comp ` C ) |
|
5 | comffval2.x | |- ( ph -> X e. B ) |
|
6 | comffval2.y | |- ( ph -> Y e. B ) |
|
7 | comffval2.z | |- ( ph -> Z e. B ) |
|
8 | comfval2.f | |- ( ph -> F e. ( X H Y ) ) |
|
9 | comfval2.g | |- ( ph -> G e. ( Y H Z ) ) |
|
10 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
11 | 3 2 10 5 6 | homfval | |- ( ph -> ( X H Y ) = ( X ( Hom ` C ) Y ) ) |
12 | 8 11 | eleqtrd | |- ( ph -> F e. ( X ( Hom ` C ) Y ) ) |
13 | 3 2 10 6 7 | homfval | |- ( ph -> ( Y H Z ) = ( Y ( Hom ` C ) Z ) ) |
14 | 9 13 | eleqtrd | |- ( ph -> G e. ( Y ( Hom ` C ) Z ) ) |
15 | 1 2 10 4 5 6 7 12 14 | comfval | |- ( ph -> ( G ( <. X , Y >. O Z ) F ) = ( G ( <. X , Y >. .x. Z ) F ) ) |