Description: Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | compleq | |- ( A = B <-> ( _V \ A ) = ( _V \ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | complss | |- ( A C_ B <-> ( _V \ B ) C_ ( _V \ A ) ) |
|
2 | complss | |- ( B C_ A <-> ( _V \ A ) C_ ( _V \ B ) ) |
|
3 | 1 2 | anbi12ci | |- ( ( A C_ B /\ B C_ A ) <-> ( ( _V \ A ) C_ ( _V \ B ) /\ ( _V \ B ) C_ ( _V \ A ) ) ) |
4 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
5 | eqss | |- ( ( _V \ A ) = ( _V \ B ) <-> ( ( _V \ A ) C_ ( _V \ B ) /\ ( _V \ B ) C_ ( _V \ A ) ) ) |
|
6 | 3 4 5 | 3bitr4i | |- ( A = B <-> ( _V \ A ) = ( _V \ B ) ) |