Description: Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011) (Proof shortened by BJ, 19-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | complss | |- ( A C_ B <-> ( _V \ B ) C_ ( _V \ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscon | |- ( A C_ B -> ( _V \ B ) C_ ( _V \ A ) ) |
|
2 | sscon | |- ( ( _V \ B ) C_ ( _V \ A ) -> ( _V \ ( _V \ A ) ) C_ ( _V \ ( _V \ B ) ) ) |
|
3 | ddif | |- ( _V \ ( _V \ A ) ) = A |
|
4 | ddif | |- ( _V \ ( _V \ B ) ) = B |
|
5 | 2 3 4 | 3sstr3g | |- ( ( _V \ B ) C_ ( _V \ A ) -> A C_ B ) |
6 | 1 5 | impbii | |- ( A C_ B <-> ( _V \ B ) C_ ( _V \ A ) ) |