Description: Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011) (Proof shortened by BJ, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | complss | |- ( A C_ B <-> ( _V \ B ) C_ ( _V \ A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sscon | |- ( A C_ B -> ( _V \ B ) C_ ( _V \ A ) ) | |
| 2 | sscon | |- ( ( _V \ B ) C_ ( _V \ A ) -> ( _V \ ( _V \ A ) ) C_ ( _V \ ( _V \ B ) ) ) | |
| 3 | ddif | |- ( _V \ ( _V \ A ) ) = A | |
| 4 | ddif | |- ( _V \ ( _V \ B ) ) = B | |
| 5 | 2 3 4 | 3sstr3g | |- ( ( _V \ B ) C_ ( _V \ A ) -> A C_ B ) | 
| 6 | 1 5 | impbii | |- ( A C_ B <-> ( _V \ B ) C_ ( _V \ A ) ) |