Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| Assertion | compss | |- ( F " G ) = { y e. ~P A | ( A \ y ) e. G } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| 2 | 1 | compsscnv | |- `' F = F |
| 3 | 2 | imaeq1i | |- ( `' F " G ) = ( F " G ) |
| 4 | difeq2 | |- ( x = y -> ( A \ x ) = ( A \ y ) ) |
|
| 5 | 4 | cbvmptv | |- ( x e. ~P A |-> ( A \ x ) ) = ( y e. ~P A |-> ( A \ y ) ) |
| 6 | 1 5 | eqtri | |- F = ( y e. ~P A |-> ( A \ y ) ) |
| 7 | 6 | mptpreima | |- ( `' F " G ) = { y e. ~P A | ( A \ y ) e. G } |
| 8 | 3 7 | eqtr3i | |- ( F " G ) = { y e. ~P A | ( A \ y ) e. G } |