Step |
Hyp |
Ref |
Expression |
1 |
|
compss.a |
|- F = ( x e. ~P A |-> ( A \ x ) ) |
2 |
|
cnvopab |
|- `' { <. y , x >. | ( y e. ~P A /\ x = ( A \ y ) ) } = { <. x , y >. | ( y e. ~P A /\ x = ( A \ y ) ) } |
3 |
|
difeq2 |
|- ( x = y -> ( A \ x ) = ( A \ y ) ) |
4 |
3
|
cbvmptv |
|- ( x e. ~P A |-> ( A \ x ) ) = ( y e. ~P A |-> ( A \ y ) ) |
5 |
|
df-mpt |
|- ( y e. ~P A |-> ( A \ y ) ) = { <. y , x >. | ( y e. ~P A /\ x = ( A \ y ) ) } |
6 |
1 4 5
|
3eqtri |
|- F = { <. y , x >. | ( y e. ~P A /\ x = ( A \ y ) ) } |
7 |
6
|
cnveqi |
|- `' F = `' { <. y , x >. | ( y e. ~P A /\ x = ( A \ y ) ) } |
8 |
|
df-mpt |
|- ( x e. ~P A |-> ( A \ x ) ) = { <. x , y >. | ( x e. ~P A /\ y = ( A \ x ) ) } |
9 |
|
compsscnvlem |
|- ( ( y e. ~P A /\ x = ( A \ y ) ) -> ( x e. ~P A /\ y = ( A \ x ) ) ) |
10 |
|
compsscnvlem |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( y e. ~P A /\ x = ( A \ y ) ) ) |
11 |
9 10
|
impbii |
|- ( ( y e. ~P A /\ x = ( A \ y ) ) <-> ( x e. ~P A /\ y = ( A \ x ) ) ) |
12 |
11
|
opabbii |
|- { <. x , y >. | ( y e. ~P A /\ x = ( A \ y ) ) } = { <. x , y >. | ( x e. ~P A /\ y = ( A \ x ) ) } |
13 |
8 1 12
|
3eqtr4i |
|- F = { <. x , y >. | ( y e. ~P A /\ x = ( A \ y ) ) } |
14 |
2 7 13
|
3eqtr4i |
|- `' F = F |