Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> y = ( A \ x ) ) |
2 |
|
difss |
|- ( A \ x ) C_ A |
3 |
1 2
|
eqsstrdi |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> y C_ A ) |
4 |
|
velpw |
|- ( y e. ~P A <-> y C_ A ) |
5 |
3 4
|
sylibr |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> y e. ~P A ) |
6 |
1
|
difeq2d |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( A \ y ) = ( A \ ( A \ x ) ) ) |
7 |
|
elpwi |
|- ( x e. ~P A -> x C_ A ) |
8 |
7
|
adantr |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> x C_ A ) |
9 |
|
dfss4 |
|- ( x C_ A <-> ( A \ ( A \ x ) ) = x ) |
10 |
8 9
|
sylib |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( A \ ( A \ x ) ) = x ) |
11 |
6 10
|
eqtr2d |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> x = ( A \ y ) ) |
12 |
5 11
|
jca |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( y e. ~P A /\ x = ( A \ y ) ) ) |