| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> y = ( A \ x ) ) |
| 2 |
|
difss |
|- ( A \ x ) C_ A |
| 3 |
1 2
|
eqsstrdi |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> y C_ A ) |
| 4 |
|
velpw |
|- ( y e. ~P A <-> y C_ A ) |
| 5 |
3 4
|
sylibr |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> y e. ~P A ) |
| 6 |
1
|
difeq2d |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( A \ y ) = ( A \ ( A \ x ) ) ) |
| 7 |
|
elpwi |
|- ( x e. ~P A -> x C_ A ) |
| 8 |
7
|
adantr |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> x C_ A ) |
| 9 |
|
dfss4 |
|- ( x C_ A <-> ( A \ ( A \ x ) ) = x ) |
| 10 |
8 9
|
sylib |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( A \ ( A \ x ) ) = x ) |
| 11 |
6 10
|
eqtr2d |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> x = ( A \ y ) ) |
| 12 |
5 11
|
jca |
|- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( y e. ~P A /\ x = ( A \ y ) ) ) |