Step |
Hyp |
Ref |
Expression |
1 |
|
compss.a |
|- F = ( x e. ~P A |-> ( A \ x ) ) |
2 |
|
difexg |
|- ( A e. V -> ( A \ x ) e. _V ) |
3 |
2
|
ralrimivw |
|- ( A e. V -> A. x e. ~P A ( A \ x ) e. _V ) |
4 |
1
|
fnmpt |
|- ( A. x e. ~P A ( A \ x ) e. _V -> F Fn ~P A ) |
5 |
3 4
|
syl |
|- ( A e. V -> F Fn ~P A ) |
6 |
1
|
compsscnv |
|- `' F = F |
7 |
6
|
fneq1i |
|- ( `' F Fn ~P A <-> F Fn ~P A ) |
8 |
5 7
|
sylibr |
|- ( A e. V -> `' F Fn ~P A ) |
9 |
|
dff1o4 |
|- ( F : ~P A -1-1-onto-> ~P A <-> ( F Fn ~P A /\ `' F Fn ~P A ) ) |
10 |
5 8 9
|
sylanbrc |
|- ( A e. V -> F : ~P A -1-1-onto-> ~P A ) |
11 |
|
elpwi |
|- ( b e. ~P A -> b C_ A ) |
12 |
11
|
ad2antll |
|- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> b C_ A ) |
13 |
1
|
isf34lem1 |
|- ( ( A e. V /\ b C_ A ) -> ( F ` b ) = ( A \ b ) ) |
14 |
12 13
|
syldan |
|- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( F ` b ) = ( A \ b ) ) |
15 |
|
elpwi |
|- ( a e. ~P A -> a C_ A ) |
16 |
15
|
ad2antrl |
|- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> a C_ A ) |
17 |
1
|
isf34lem1 |
|- ( ( A e. V /\ a C_ A ) -> ( F ` a ) = ( A \ a ) ) |
18 |
16 17
|
syldan |
|- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( F ` a ) = ( A \ a ) ) |
19 |
14 18
|
psseq12d |
|- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( ( F ` b ) C. ( F ` a ) <-> ( A \ b ) C. ( A \ a ) ) ) |
20 |
|
difss |
|- ( A \ a ) C_ A |
21 |
|
pssdifcom1 |
|- ( ( b C_ A /\ ( A \ a ) C_ A ) -> ( ( A \ b ) C. ( A \ a ) <-> ( A \ ( A \ a ) ) C. b ) ) |
22 |
12 20 21
|
sylancl |
|- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( ( A \ b ) C. ( A \ a ) <-> ( A \ ( A \ a ) ) C. b ) ) |
23 |
|
dfss4 |
|- ( a C_ A <-> ( A \ ( A \ a ) ) = a ) |
24 |
16 23
|
sylib |
|- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( A \ ( A \ a ) ) = a ) |
25 |
24
|
psseq1d |
|- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( ( A \ ( A \ a ) ) C. b <-> a C. b ) ) |
26 |
19 22 25
|
3bitrrd |
|- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( a C. b <-> ( F ` b ) C. ( F ` a ) ) ) |
27 |
|
vex |
|- b e. _V |
28 |
27
|
brrpss |
|- ( a [C.] b <-> a C. b ) |
29 |
|
fvex |
|- ( F ` a ) e. _V |
30 |
29
|
brrpss |
|- ( ( F ` b ) [C.] ( F ` a ) <-> ( F ` b ) C. ( F ` a ) ) |
31 |
26 28 30
|
3bitr4g |
|- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( a [C.] b <-> ( F ` b ) [C.] ( F ` a ) ) ) |
32 |
|
relrpss |
|- Rel [C.] |
33 |
32
|
relbrcnv |
|- ( ( F ` a ) `' [C.] ( F ` b ) <-> ( F ` b ) [C.] ( F ` a ) ) |
34 |
31 33
|
bitr4di |
|- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( a [C.] b <-> ( F ` a ) `' [C.] ( F ` b ) ) ) |
35 |
34
|
ralrimivva |
|- ( A e. V -> A. a e. ~P A A. b e. ~P A ( a [C.] b <-> ( F ` a ) `' [C.] ( F ` b ) ) ) |
36 |
|
df-isom |
|- ( F Isom [C.] , `' [C.] ( ~P A , ~P A ) <-> ( F : ~P A -1-1-onto-> ~P A /\ A. a e. ~P A A. b e. ~P A ( a [C.] b <-> ( F ` a ) `' [C.] ( F ` b ) ) ) ) |
37 |
10 35 36
|
sylanbrc |
|- ( A e. V -> F Isom [C.] , `' [C.] ( ~P A , ~P A ) ) |