Metamath Proof Explorer


Theorem comraddd

Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses comraddd.1
|- ( ph -> B e. CC )
comraddd.2
|- ( ph -> C e. CC )
comraddd.3
|- ( ph -> A = ( B + C ) )
Assertion comraddd
|- ( ph -> A = ( C + B ) )

Proof

Step Hyp Ref Expression
1 comraddd.1
 |-  ( ph -> B e. CC )
2 comraddd.2
 |-  ( ph -> C e. CC )
3 comraddd.3
 |-  ( ph -> A = ( B + C ) )
4 1 2 addcomd
 |-  ( ph -> ( B + C ) = ( C + B ) )
5 3 4 eqtrd
 |-  ( ph -> A = ( C + B ) )