Description: A contraposition inference. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 13-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | con1bii.1 | |- ( -. ph <-> ps ) |
|
| Assertion | con1bii | |- ( -. ps <-> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1bii.1 | |- ( -. ph <-> ps ) |
|
| 2 | notnotb | |- ( ph <-> -. -. ph ) |
|
| 3 | 2 1 | xchbinx | |- ( ph <-> -. ps ) |
| 4 | 3 | bicomi | |- ( -. ps <-> ph ) |