Description: Contraposition. Theorem *4.12 of WhiteheadRussell p. 117. (Contributed by NM, 15-Apr-1995) (Proof shortened by Wolf Lammen, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | con2bi | |- ( ( ph <-> -. ps ) <-> ( ps <-> -. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbi | |- ( ( ph <-> -. ps ) <-> ( -. ph <-> -. -. ps ) ) |
|
| 2 | notnotb | |- ( ps <-> -. -. ps ) |
|
| 3 | 2 | bibi2i | |- ( ( -. ph <-> ps ) <-> ( -. ph <-> -. -. ps ) ) |
| 4 | bicom | |- ( ( -. ph <-> ps ) <-> ( ps <-> -. ph ) ) |
|
| 5 | 1 3 4 | 3bitr2i | |- ( ( ph <-> -. ps ) <-> ( ps <-> -. ph ) ) |