Description: Contraposition. Theorem *4.12 of WhiteheadRussell p. 117. (Contributed by NM, 15-Apr-1995) (Proof shortened by Wolf Lammen, 3-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | con2bi | |- ( ( ph <-> -. ps ) <-> ( ps <-> -. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbi | |- ( ( ph <-> -. ps ) <-> ( -. ph <-> -. -. ps ) ) |
|
2 | notnotb | |- ( ps <-> -. -. ps ) |
|
3 | 2 | bibi2i | |- ( ( -. ph <-> ps ) <-> ( -. ph <-> -. -. ps ) ) |
4 | bicom | |- ( ( -. ph <-> ps ) <-> ( ps <-> -. ph ) ) |
|
5 | 1 3 4 | 3bitr2i | |- ( ( ph <-> -. ps ) <-> ( ps <-> -. ph ) ) |