Metamath Proof Explorer


Theorem con2bid

Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995)

Ref Expression
Hypothesis con2bid.1
|- ( ph -> ( ps <-> -. ch ) )
Assertion con2bid
|- ( ph -> ( ch <-> -. ps ) )

Proof

Step Hyp Ref Expression
1 con2bid.1
 |-  ( ph -> ( ps <-> -. ch ) )
2 con2bi
 |-  ( ( ch <-> -. ps ) <-> ( ps <-> -. ch ) )
3 1 2 sylibr
 |-  ( ph -> ( ch <-> -. ps ) )