Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | con2bid.1 | |- ( ph -> ( ps <-> -. ch ) ) |
|
Assertion | con2bid | |- ( ph -> ( ch <-> -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2bid.1 | |- ( ph -> ( ps <-> -. ch ) ) |
|
2 | con2bi | |- ( ( ch <-> -. ps ) <-> ( ps <-> -. ch ) ) |
|
3 | 1 2 | sylibr | |- ( ph -> ( ch <-> -. ps ) ) |