Metamath Proof Explorer


Theorem con3d

Description: A contraposition deduction. Deduction form of con3 . (Contributed by NM, 10-Jan-1993)

Ref Expression
Hypothesis con3d.1
|- ( ph -> ( ps -> ch ) )
Assertion con3d
|- ( ph -> ( -. ch -> -. ps ) )

Proof

Step Hyp Ref Expression
1 con3d.1
 |-  ( ph -> ( ps -> ch ) )
2 notnotr
 |-  ( -. -. ps -> ps )
3 2 1 syl5
 |-  ( ph -> ( -. -. ps -> ch ) )
4 3 con1d
 |-  ( ph -> ( -. ch -> -. ps ) )