Metamath Proof Explorer


Theorem con4bii

Description: A contraposition inference. (Contributed by NM, 21-May-1994)

Ref Expression
Hypothesis con4bii.1
|- ( -. ph <-> -. ps )
Assertion con4bii
|- ( ph <-> ps )

Proof

Step Hyp Ref Expression
1 con4bii.1
 |-  ( -. ph <-> -. ps )
2 notbi
 |-  ( ( ph <-> ps ) <-> ( -. ph <-> -. ps ) )
3 1 2 mpbir
 |-  ( ph <-> ps )