Metamath Proof Explorer


Theorem con5

Description: Biconditional contraposition variation. This proof is con5VD automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion con5
|- ( ( ph <-> -. ps ) -> ( -. ph -> ps ) )

Proof

Step Hyp Ref Expression
1 biimpr
 |-  ( ( ph <-> -. ps ) -> ( -. ps -> ph ) )
2 1 con1d
 |-  ( ( ph <-> -. ps ) -> ( -. ph -> ps ) )