Metamath Proof Explorer


Theorem conax1k

Description: Weakening of conax1 . General instance of pm2.51 and of pm2.52 . (Contributed by BJ, 28-Oct-2023)

Ref Expression
Assertion conax1k
|- ( -. ( ph -> ps ) -> ( ch -> -. ps ) )

Proof

Step Hyp Ref Expression
1 conax1
 |-  ( -. ( ph -> ps ) -> -. ps )
2 1 a1d
 |-  ( -. ( ph -> ps ) -> ( ch -> -. ps ) )