Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006) (Proof shortened by Wolf Lammen, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | condan.1 | |- ( ( ph /\ -. ps ) -> ch ) | |
| condan.2 | |- ( ( ph /\ -. ps ) -> -. ch ) | ||
| Assertion | condan | |- ( ph -> ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | condan.1 | |- ( ( ph /\ -. ps ) -> ch ) | |
| 2 | condan.2 | |- ( ( ph /\ -. ps ) -> -. ch ) | |
| 3 | 1 2 | pm2.65da | |- ( ph -> -. -. ps ) | 
| 4 | 3 | notnotrd | |- ( ph -> ps ) |