Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006) (Proof shortened by Wolf Lammen, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | condan.1 | |- ( ( ph /\ -. ps ) -> ch ) |
|
condan.2 | |- ( ( ph /\ -. ps ) -> -. ch ) |
||
Assertion | condan | |- ( ph -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | condan.1 | |- ( ( ph /\ -. ps ) -> ch ) |
|
2 | condan.2 | |- ( ( ph /\ -. ps ) -> -. ch ) |
|
3 | 1 2 | pm2.65da | |- ( ph -> -. -. ps ) |
4 | 3 | notnotrd | |- ( ph -> ps ) |