Metamath Proof Explorer


Theorem confun

Description: Given the hypotheses there exists a proof for (c implies ( d iff a ) ). (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun.1
|- ph
confun.2
|- ( ch -> ps )
confun.3
|- ( ch -> th )
confun.4
|- ( ph -> ( ph -> ps ) )
Assertion confun
|- ( ch -> ( th <-> ph ) )

Proof

Step Hyp Ref Expression
1 confun.1
 |-  ph
2 confun.2
 |-  ( ch -> ps )
3 confun.3
 |-  ( ch -> th )
4 confun.4
 |-  ( ph -> ( ph -> ps ) )
5 ax-1
 |-  ( ch -> ( th -> ch ) )
6 3 a1i
 |-  ( ch -> ( ch -> th ) )
7 5 6 impbid
 |-  ( ch -> ( th <-> ch ) )
8 1 4 ax-mp
 |-  ( ph -> ps )
9 ax-1
 |-  ( ph -> ( ps -> ph ) )
10 1 9 ax-mp
 |-  ( ps -> ph )
11 8 10 impbii
 |-  ( ph <-> ps )
12 2 11 sylibr
 |-  ( ch -> ph )
13 12 a1i
 |-  ( ch -> ( ch -> ph ) )
14 ax-1
 |-  ( ch -> ( ph -> ch ) )
15 13 14 impbid
 |-  ( ch -> ( ch <-> ph ) )
16 7 15 bitrd
 |-  ( ch -> ( th <-> ph ) )