Metamath Proof Explorer


Theorem confun2

Description: Confun simplified to two propositions. (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun2.1
|- ( ps -> ph )
confun2.2
|- ( ps -> -. ( ps -> ( ps /\ -. ps ) ) )
confun2.3
|- ( ( ps -> ph ) -> ( ( ps -> ph ) -> ph ) )
Assertion confun2
|- ( ps -> ( -. ( ps -> ( ps /\ -. ps ) ) <-> ( ps -> ph ) ) )

Proof

Step Hyp Ref Expression
1 confun2.1
 |-  ( ps -> ph )
2 confun2.2
 |-  ( ps -> -. ( ps -> ( ps /\ -. ps ) ) )
3 confun2.3
 |-  ( ( ps -> ph ) -> ( ( ps -> ph ) -> ph ) )
4 1 1 2 3 confun
 |-  ( ps -> ( -. ( ps -> ( ps /\ -. ps ) ) <-> ( ps -> ph ) ) )