Description: Confun simplified to two propositions. (Contributed by Jarvin Udandy, 6-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | confun2.1 | |- ( ps -> ph ) |
|
confun2.2 | |- ( ps -> -. ( ps -> ( ps /\ -. ps ) ) ) |
||
confun2.3 | |- ( ( ps -> ph ) -> ( ( ps -> ph ) -> ph ) ) |
||
Assertion | confun2 | |- ( ps -> ( -. ( ps -> ( ps /\ -. ps ) ) <-> ( ps -> ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | confun2.1 | |- ( ps -> ph ) |
|
2 | confun2.2 | |- ( ps -> -. ( ps -> ( ps /\ -. ps ) ) ) |
|
3 | confun2.3 | |- ( ( ps -> ph ) -> ( ( ps -> ph ) -> ph ) ) |
|
4 | 1 1 2 3 | confun | |- ( ps -> ( -. ( ps -> ( ps /\ -. ps ) ) <-> ( ps -> ph ) ) ) |