Metamath Proof Explorer


Theorem confun3

Description: Confun's more complex form where both a,d have been "defined". (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun3.1
|- ( ph <-> ( ch -> ps ) )
confun3.2
|- ( th <-> -. ( ch -> ( ch /\ -. ch ) ) )
confun3.3
|- ( ch -> ps )
confun3.4
|- ( ch -> -. ( ch -> ( ch /\ -. ch ) ) )
confun3.5
|- ( ( ch -> ps ) -> ( ( ch -> ps ) -> ps ) )
Assertion confun3
|- ( ch -> ( -. ( ch -> ( ch /\ -. ch ) ) <-> ( ch -> ps ) ) )

Proof

Step Hyp Ref Expression
1 confun3.1
 |-  ( ph <-> ( ch -> ps ) )
2 confun3.2
 |-  ( th <-> -. ( ch -> ( ch /\ -. ch ) ) )
3 confun3.3
 |-  ( ch -> ps )
4 confun3.4
 |-  ( ch -> -. ( ch -> ( ch /\ -. ch ) ) )
5 confun3.5
 |-  ( ( ch -> ps ) -> ( ( ch -> ps ) -> ps ) )
6 3 3 4 5 confun
 |-  ( ch -> ( -. ( ch -> ( ch /\ -. ch ) ) <-> ( ch -> ps ) ) )