Metamath Proof Explorer


Theorem confun4

Description: An attempt at derivative. Resisted simplest path to a proof. (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun4.1
|- ph
confun4.2
|- ( ( ph -> ps ) -> ps )
confun4.3
|- ( ps -> ( ph -> ch ) )
confun4.4
|- ( ( ch -> th ) -> ( ( ph -> th ) <-> ps ) )
confun4.5
|- ( ta <-> ( ch -> th ) )
confun4.6
|- ( et <-> -. ( ch -> ( ch /\ -. ch ) ) )
confun4.7
|- ps
confun4.8
|- ( ch -> th )
Assertion confun4
|- ( ch -> ( ps -> ta ) )

Proof

Step Hyp Ref Expression
1 confun4.1
 |-  ph
2 confun4.2
 |-  ( ( ph -> ps ) -> ps )
3 confun4.3
 |-  ( ps -> ( ph -> ch ) )
4 confun4.4
 |-  ( ( ch -> th ) -> ( ( ph -> th ) <-> ps ) )
5 confun4.5
 |-  ( ta <-> ( ch -> th ) )
6 confun4.6
 |-  ( et <-> -. ( ch -> ( ch /\ -. ch ) ) )
7 confun4.7
 |-  ps
8 confun4.8
 |-  ( ch -> th )
9 7 3 ax-mp
 |-  ( ph -> ch )
10 1 9 ax-mp
 |-  ch
11 bicom1
 |-  ( ( ta <-> ( ch -> th ) ) -> ( ( ch -> th ) <-> ta ) )
12 5 11 ax-mp
 |-  ( ( ch -> th ) <-> ta )
13 12 biimpi
 |-  ( ( ch -> th ) -> ta )
14 8 13 ax-mp
 |-  ta
15 7 14 pm3.2i
 |-  ( ps /\ ta )
16 pm3.4
 |-  ( ( ps /\ ta ) -> ( ps -> ta ) )
17 15 16 ax-mp
 |-  ( ps -> ta )
18 10 17 pm3.2i
 |-  ( ch /\ ( ps -> ta ) )
19 pm3.4
 |-  ( ( ch /\ ( ps -> ta ) ) -> ( ch -> ( ps -> ta ) ) )
20 18 19 ax-mp
 |-  ( ch -> ( ps -> ta ) )