Step |
Hyp |
Ref |
Expression |
1 |
|
confun4.1 |
|- ph |
2 |
|
confun4.2 |
|- ( ( ph -> ps ) -> ps ) |
3 |
|
confun4.3 |
|- ( ps -> ( ph -> ch ) ) |
4 |
|
confun4.4 |
|- ( ( ch -> th ) -> ( ( ph -> th ) <-> ps ) ) |
5 |
|
confun4.5 |
|- ( ta <-> ( ch -> th ) ) |
6 |
|
confun4.6 |
|- ( et <-> -. ( ch -> ( ch /\ -. ch ) ) ) |
7 |
|
confun4.7 |
|- ps |
8 |
|
confun4.8 |
|- ( ch -> th ) |
9 |
7 3
|
ax-mp |
|- ( ph -> ch ) |
10 |
1 9
|
ax-mp |
|- ch |
11 |
|
bicom1 |
|- ( ( ta <-> ( ch -> th ) ) -> ( ( ch -> th ) <-> ta ) ) |
12 |
5 11
|
ax-mp |
|- ( ( ch -> th ) <-> ta ) |
13 |
12
|
biimpi |
|- ( ( ch -> th ) -> ta ) |
14 |
8 13
|
ax-mp |
|- ta |
15 |
7 14
|
pm3.2i |
|- ( ps /\ ta ) |
16 |
|
pm3.4 |
|- ( ( ps /\ ta ) -> ( ps -> ta ) ) |
17 |
15 16
|
ax-mp |
|- ( ps -> ta ) |
18 |
10 17
|
pm3.2i |
|- ( ch /\ ( ps -> ta ) ) |
19 |
|
pm3.4 |
|- ( ( ch /\ ( ps -> ta ) ) -> ( ch -> ( ps -> ta ) ) ) |
20 |
18 19
|
ax-mp |
|- ( ch -> ( ps -> ta ) ) |